Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36159573

ABSTRACT

Lung cancer is one of the most common malignant tumors, and non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases. Chinese herbal formula Qing-Re-Huo-Xue (QRHXF) has shown antitumor effects in the NSCLC xenograft mouse model of Lewis cells. However, the molecular mechanisms underlying the antitumor effects of QRHXF remain unknown. In this study, an A549 xenograft mouse model was established, and the mice were then treated with QRHXF or vehicle through oral gavage. Tumor growth was monitored. Tumors were subsequently harvested, and RNA sequencing was performed. Compared with the control group, mice treated with QRHXF showed smaller tumor size and slower tumor growth. RNA sequencing results indicated 36 differentially expressed genes between QRHXF treated and control groups. 16 upregulated and 20 downregulated genes were identified. Enrichment analysis showed four differential expression genes (DEGs) related to tumor growth pathways RASAL2, SerpinB5, UTG1A4, and PDE3A. In conclusion, this study revealed that QRHXF could inhibit tumor growth in an A549 xenograft mouse model, and the target genes of QRHXF may include PDE3A, RASAL2, SERPIB5, and UTG1A4.

2.
Mol Med Rep ; 24(5)2021 11.
Article in English | MEDLINE | ID: mdl-34542166

ABSTRACT

Cycloastragenol (CAG), a secondary metabolite from the roots of Astragalus zahlbruckneri, has been reported to exert anti­inflammatory effects in heart, skin and liver diseases. However, its role in asthma remains unclear. The present study aimed to investigate the effect of CAG on airway inflammation in an ovalbumin (OVA)­induced mouse asthma model. The current study evaluated the lung function and levels of inflammation and autophagy via measurement of airway hyperresponsiveness (AHR), lung histology examination, inflammatory cytokine measurement and western blotting, amongst other techniques. The results demonstrated that CAG attenuated OVA­induced AHR in vivo. In addition, the total number of leukocytes and eosinophils, as well as the secretion of inflammatory cytokines, including interleukin (IL)­5, IL­13 and immunoglobulin E were diminished in bronchoalveolar lavage fluid of the OVA­induced murine asthma model. Histological analysis revealed that CAG suppressed inflammatory cell infiltration and goblet cell secretion. Notably, based on molecular docking simulation, CAG was demonstrated to bind to the active site of autophagy­related gene 4­microtubule­associated proteins light chain 3 complex, which explains the reduced autophagic flux in asthma caused by CAG. The expression levels of proteins associated with autophagy pathways were inhibited following treatment with CAG. Taken together, the results of the present study suggest that CAG exerts an anti­inflammatory effect in asthma, and its role may be associated with the inhibition of autophagy in lung cells.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/etiology , Autophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Sapogenins/pharmacology , Animals , Asthma/drug therapy , Asthma/metabolism , Autophagy-Related Proteins/antagonists & inhibitors , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/metabolism , Biomarkers , Biopsy , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/metabolism , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Management , Disease Models, Animal , Disease Susceptibility , Female , Immunoglobulin E/blood , Immunoglobulin E/immunology , Immunohistochemistry , Inflammation Mediators/metabolism , Mice , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Sapogenins/chemistry , Structure-Activity Relationship
3.
Article in English | MEDLINE | ID: mdl-33531915

ABSTRACT

Airway remodeling is one of the typical pathological characteristics of asthma, while the structural changes of the airways in asthma are complex, which impedes the development of novel asthma targeted therapy. Our previous study had shown that Bu-Shen-Yi-Qi formula (BSYQF) could ameliorate airway remodeling in chronic asthmatic mice by modulating airway inflammation and oxidative stress in the lung. In this study, we analysed the lung transcriptome of control mice and asthmatic mouse model with/without BSYQF treatment. Using RNA-sequencing (RNA-seq) analysis, we found that 264/1746 (15.1%) of transcripts showing abnormal expression in asthmatic mice were reverted back to completely or partially normal levels by BSYQF treatment. Additionally, based on previous results, we identified 21 differential expression genes (DEGs) with fold changes (FC) > (±) 2.0 related to inflammatory, oxidative stress, mitochondria, PI3K/AKT, and MAPK signal pathways which may play important roles in the mechanism of the anti-remodeling effect of BSYQF treatment. Through inputting 21 DEGs into the IPA database to construct a gene network, we inferred Adipoq, SPP1, and TNC which were located at critical nodes in the network may be key regulators of BSYQF's anti-remodeling effect. In addition, the quantitative real-time polymerase chain reaction (qRT-PCR) result for the selected four DEGs matched those of the RNA-seq analysis. Our results provide a preliminary clue to the molecular mechanism of the anti-remodeling effect of BSYQF in asthma.

4.
BMC Complement Altern Med ; 15: 9, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25652121

ABSTRACT

BACKGROUND: Traditional Uighur medicine shares an origin with Greco-Arab medicine. It describes the health of a human body as the dynamic homeostasis of four normal Hilits (humours), known as Kan, Phlegm, Safra, and Savda. An abnormal change in one Hilit may cause imbalance among the Hilits, leading to the development of a syndrome. Abnormal Savda is a major syndrome of complex diseases that are associated with common biological changes during disease development. Here, we studied the protein expression profile common to tumour patients with Abnormal Savda to elucidate the biological basis of this syndrome and identify potential biomarkers associated with Abnormal Savda. METHODS: Patients with malignant tumours were classified by the diagnosis of Uighur medicine into two groups: Abnormal Savda type tumour (ASt) and non-Abnormal Savda type tumour (nASt), which includes other syndromes. The profile of proteins that were differentially expressed in ASt compared with nASt and normal controls (NC) was analysed by iTRAQ proteomics and evaluated by bioinformatics using MetaCore™ software and an online database. The expression of candidate proteins was verified in all plasma samples by enzyme-linked immunosorbent assay (ELISA). RESULTS: We identified 31 plasma proteins that were differentially expressed in ASt compared with nASt, of which only 10 showed quantitatively different expression between ASt and NC. Bioinformatics analysis indicated that most of these proteins are known biomarkers for neoplasms of the stomach, breast, and lung. ELISA detection showed significant upregulation of plasma SAA1 and SPP24 and downregulation of PIGR and FASN in ASt compared with nASt and NC (p < 0.05). CONCLUSIONS: Abnormal Savda may be causally associated with changes in the whole regulation network of protein expression during carcinogenesis. The expression of potential biomarkers might be used to distinguish Abnormal Savda from other syndromes.


Subject(s)
Blood Proteins/metabolism , Medicine, Traditional , Neoplasms/blood , Biomarkers/blood , Biomedical Research , Breast Neoplasms/blood , Case-Control Studies , Computational Biology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Lung Neoplasms/blood , Male , Prospective Studies , Proteomics , Stomach Neoplasms/blood , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL