Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37029960

ABSTRACT

In menopausal and postmenopausal women, the risk for obesity, cardiovascular disease, osteoporosis, and gut dysbiosis are elevated by the depletion of 17ß-estradiol. A diet that is high in omega-6 polyunsaturated fatty acids (PUFAs), particularly linoleic acid (LA), and low in saturated fatty acids (SFAs) found in coconut oil and omega-3 PUFAs may worsen symptoms of estrogen deficiency. To investigate this hypothesis, ovariectomized C57BL/6J and transgenic fat-1 mice, which lower endogenous omega-6 polyunsaturated fatty acids, were treated with either a vehicle or estradiol benzoate (EB) and fed a high-fat diet with a high or low PUFA:SFA ratio for ~15 weeks. EB treatment reversed obesity, glucose intolerance, and bone loss in ovariectomized mice. fat-1 mice fed a 1% LA diet experienced reduced weight gain and adiposity, while those fed a 22.5% LA diet exhibited increased energy expenditure and activity in EB-treated ovariectomized mice. Coconut oil SFAs and omega-3 FAs helped protect against glucose intolerance without EB treatment. Improved insulin sensitivity was observed in wild-type and fat-1 mice fed 1% LA diet with EB treatment, while fat-1 mice fed 22.5% LA diet was protected against insulin resistance without EB treatment. The production of short-chain fatty acids by gut microbial microbiota was linked to omega-3 FAs production and improved energy homeostasis. These findings suggest that a balanced dietary fatty acid profile containing SFAs and a lower ratio of omega-6:omega-3 FAs is more effective in alleviating metabolic disorders during E2 deficiency.


Subject(s)
Estradiol , Fatty Acids, Omega-3 , Fatty Acids , Glucose Intolerance , Female , Animals , Mice , Ovariectomy , Mice, Transgenic , Mice, Inbred C57BL , Glucose Intolerance/prevention & control , Estradiol/pharmacology , Coconut Oil , Gastrointestinal Microbiome , Linoleic Acid
2.
J Nutr Biochem ; 56: 142-151, 2018 06.
Article in English | MEDLINE | ID: mdl-29571008

ABSTRACT

We previously showed that C57BL/6J mice fed high-fat diet (HFD) supplemented with 1% grape polyphenols (GP) for 12 weeks developed a bloom of Akkermansia muciniphila with attenuated metabolic syndrome symptoms. Here we investigated early timing of GP-induced effects and the responsible class of grape polyphenols. Mice were fed HFD, low-fat diet (LFD) or formulations supplemented with GP (HFD-GP, LFD-GP) for 14 days. Mice fed HFD-GP, but not LFD-GP, showed improved oral glucose tolerance compared to controls. A. muciniphila bloom occurred earlier in mice fed LFD-GP than HFD-GP; however, timing was dependent on baseline A. muciniphila levels rather than dietary fat. Mice gavaged for 10 days with GP extract (GPE) or grape proanthocyanidins (PACs), each delivering 360 mg PACs/kg body weight, induced a bloom of fecal and cecal A. muciniphila, the rate of which depended on initial A. muciniphila abundance. Grape PACs were sufficient to induce a bloom of A. muciniphila independent of specific intestinal gene expression changes. Gut microbial community analysis and in vitro inhibition of A. muciniphila by GPE or PACs suggest that the A. muciniphila bloom in vivo occurs via indirect mechanisms.


Subject(s)
Diet, High-Fat , Intestines/drug effects , Polyphenols/pharmacology , Proanthocyanidins/pharmacology , Verrucomicrobia/growth & development , Vitis/chemistry , Animal Feed , Animals , Diet , Dietary Fats/pharmacology , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Glucose Tolerance Test , Inflammation/metabolism , Liver/metabolism , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , RNA, Ribosomal, 16S/genetics , Soybean Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL