Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Materials (Basel) ; 15(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35329610

ABSTRACT

The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.

2.
PLoS One ; 17(1): e0262099, 2022.
Article in English | MEDLINE | ID: mdl-34995297

ABSTRACT

Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.


Subject(s)
Antioxidants/pharmacology , Beta vulgaris/metabolism , Droughts , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Putrescine/pharmacology , Stress, Physiological , Beta vulgaris/drug effects , Beta vulgaris/genetics , Oxidative Stress , Photosynthesis , Plant Proteins/genetics , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Reactive Oxygen Species/metabolism
3.
BMC Complement Altern Med ; 15: 195, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26100408

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressively developing neurodegenerative disorder of the brain in the elderly people. Vanda roxburghii Rbr. root has been used traditionally in Bangladesh as tonic to brain and in the treatment of nervous system disorders including AD. Therefore, we aimed to investigate the cholinesterase inhibitory activities and antioxidant properties of the extracts from V. roxburghii. METHODS: The crude methanol extract from the roots of plant was sequentially fractionated with petroleum ether, chloroform, ethylacetate and water to yield their corresponding extracts. The extracts were assessed for acetylcholinesterase and butyrylcholinesterase inhibitory activity by modified Ellman method and antioxidant property by several assays including ferric reducing antioxidant power, scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and hydroxyl radical, and inhibition of lipid peroxidation. Endogenous substances in the extracts were analyzed by the standard phytochemical methods and active compound was isolated by the chromatographic methods. RESULTS: Chloroform extract was shown to demonstrate strong ferric-reducing antioxidant power and scavenging activity against DPPH and hydroxyl free radicals when compared with the other extracts and the reference standard catechin. The antioxidant effect was further verified by inhibition of lipid peroxidation in rat brain homogenates. Likewise, the chloroform extract exhibited the highest inhibition against both the acetylcholinesterase and butyrylcholinesterase enzymes with IC50 values of 221.13 and 82.51 µg/ml, respectively. Phytochemical screening revealed a large amount of phenolics and flavonoids in the chloroform extract. Bioactivity guided separation techniques led to the isolation of a strong antioxidant from the chloroform extract and its structure was determined as gigantol on the basis of spectral studies. CONCLUSION: These results suggest that the chloroform extract of V. roxburghii, possibly due to its phenolic compounds, exert potential antioxidant and cholinesterase inhibitory activities, which may be useful in the treatment of AD.


Subject(s)
Antioxidants , Orchidaceae/chemistry , Plant Extracts , Polyphenols , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Chloroform , Cholinesterase Inhibitors , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL