Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Metabolites ; 13(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37887405

ABSTRACT

For dairy cattle to perform well throughout and following lactations, precise dietary control during the periparturient phase is crucial. The primary issues experienced by periparturient dairy cows include issues like decreased dry matter intake (DMI), a negative energy balance, higher levels of non-esterified fatty acids (NEFA), and the ensuing inferior milk output. Dairy cattle have always been fed a diet high in crude protein (CP) to produce the most milk possible. Despite the vital function that dairy cows play in the conversion of dietary CP into milk, a sizeable percentage of nitrogen is inevitably expelled, which raises serious environmental concerns. To reduce nitrogen emissions and their production, lactating dairy cows must receive less CP supplementation. Supplementing dairy cattle with rumen-protected methionine (RPM) and choline (RPC) has proven to be a successful method for improving their ability to use nitrogen, regulate their metabolism, and produce milk. The detrimental effects of low dietary protein consumption on the milk yield, protein yield, and dry matter intake may be mitigated by these nutritional treatments. In metabolic activities like the synthesis of sulfur-containing amino acids and methylation reactions, RPM and RPC are crucial players. Methionine, a limiting amino acid, affects the production of milk protein and the success of lactation in general. According to the existing data in the literature, methionine supplementation has a favorable impact on the pathways that produce milk. Similarly, choline is essential for DNA methylation, cell membrane stability, and lipid metabolism. Furthermore, RPC supplementation during the transition phase improves dry matter intake, postpartum milk yield, and fat-corrected milk (FCM) production. This review provides comprehensive insights into the roles of RPM and RPC in optimizing nitrogen utilization, metabolism, and enhancing milk production performance in periparturient dairy cattle, offering valuable strategies for sustainable dairy farming practices.

2.
Front Immunol ; 14: 1290044, 2023.
Article in English | MEDLINE | ID: mdl-38259482

ABSTRACT

Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.


Subject(s)
Mastitis , Trace Elements , Female , Pregnancy , Cattle , Animals , Humans , Vitamins , Antioxidants , Amino Acids , Reactive Oxygen Species , Rumen , Vitamin A , Vitamin K , Anti-Inflammatory Agents
3.
Front Immunol ; 13: 1042895, 2022.
Article in English | MEDLINE | ID: mdl-36713436

ABSTRACT

Overproduction of reactive oxygen species (ROS) is a well-known phenomenon experienced by ruminants, especially during the transition from late gestation to successful lactation. This overproduction of ROS may lead to oxidative stress (OS), which compromises the immune and anti-inflammatory systems of animals, thus predisposing them to health issues. Besides, during the periparturient period, metabolic stress is developed due to a negative energy balance, which is followed by excessive fat mobilization and poor production performance. Excessive lipolysis causes immune suppression, abnormal regulation of inflammation, and enhanced oxidative stress. Indeed, OS plays a key role in regulating the metabolic activity of various organs and the productivity of farm animals. For example, rapid fetal growth and the production of large amounts of colostrum and milk, as well as an increase in both maternal and fetal metabolism, result in increased ROS production and an increased need for micronutrients, including antioxidants, during the last trimester of pregnancy and at the start of lactation. Oxidative stress is generally neutralized by the natural antioxidant system in the body. However, in some special phases, such as the periparturient period, the animal's natural antioxidant system is unable to cope with the situation. The effect of rumen-protected limiting amino acids and choline on the regulation of immunity, antioxidative, and anti-inflammatory status and milk production performance, has been widely studied in ruminants. Thus, in the current review, we gathered and interpreted the data on this topic, especially during the perinatal and lactational stages.


Subject(s)
Antioxidants , Methionine , Animals , Female , Pregnancy , Antioxidants/metabolism , Amino Acids/metabolism , Lysine/metabolism , Choline/pharmacology , Choline/metabolism , Dietary Supplements , Reactive Oxygen Species/metabolism , Rumen/metabolism , Ruminants , Racemethionine/metabolism
4.
Trop Anim Health Prod ; 52(5): 2499-2504, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32377969

ABSTRACT

The current research study was designed to determine the inclusion of 2% dietary essential coconut oil with and without coccidiosis challenge on performance, carcass characteristics, and intestinal histomorphology in broilers. A total of 560 broiler chicks were divided into 4 groups and then subdivided into 5 replicates. Coconut oil was used at 2% in feed, whereas coccidiosis challenged was introduced using 30,000 oocysts. The other four groups were designated as G1 (without coconut oil and without oocysts), G2 (without coconut oil with oocysts), G3 (with coconut oil without oocysts), and G4 (with coconut oil and with oocysts). The results revealed that the overall feed consumption was significantly (P < 0.01) increased in G1 and G2 than G3 and G4 groups. Overall weight gain was significantly (P < 0.01) higher in G3 compared with all other groups. Significantly (P < 0.01) better feed conversion ratio was recorded at the finisher phase in G3 and G4 groups in comparison with G1 and G2. The villus length, width, and surface area were higher (P < 0.01) in G3 compared with G2. Based on the findings of the present study, it was concluded that the use of 2% coconut oil in broiler feed improved growth performance and villus histology during coccidial challenge.


Subject(s)
Chickens/growth & development , Coccidiosis/veterinary , Coconut Oil/pharmacology , Diet/veterinary , Dietary Supplements , Poultry Diseases/drug therapy , Animal Feed/analysis , Animals , Coccidiosis/drug therapy , Coccidiosis/pathology , Coconut Oil/administration & dosage , Intestines/drug effects , Oocysts/drug effects , Poultry Diseases/parasitology , Weight Gain
5.
Environ Sci Pollut Res Int ; 27(13): 15223-15232, 2020 May.
Article in English | MEDLINE | ID: mdl-32072415

ABSTRACT

Arsenic is a major environmental toxicant of concern, affecting both female and male reproductive systems. The present study was conducted to investigate the toxic effects of arsenic on semen quality and reproductive hormones of Teddy bucks, an important domestic species in regions of Pakistan. In addition to arsenic, vitamin C was fed to a subset of animals to determine if there were ameliorative effects on reproductive parameters. Sixteen adult Teddy bucks were randomly divided into four experimental groups: A (control), B (arsenic 5 mg/kg BW/day orally), and C (arsenic 5 mg/kg BW/day plus vitamin C of an oral dose of 200 mg/kg BW/day). The animals in experimental group D were given only vitamin C (oral dose of 200 mg/kg BW/day). Animals were fed treated food once a day for 12 weeks. Semen quality parameters (volume, motility, count, sperm morphology, live dead ratio, sperm membrane integrity, and sperm DNA integrity) of bucks from each experimental group were evaluated on a weekly basis. Hematology and the level of arsenic in the blood were assessed every 2 weeks. Serum was collected fortnightly to measure reproductive and stress hormones (testosterone, luteinizing hormone, follicle-stimulating hormones, and cortisol). At the end of the study, all the animals were slaughtered, and the testes of all the animals were collected and evaluated for histopathology. Semen parameters in arsenic-treated bucks were significantly reduced (p < 0.05) compared with controls. Moreover, the levels of male hormones (testosterone, luteinizing hormone, and follicle-stimulating hormone) were significantly decreased in arsenic-treated animals, while cortisol was significantly increased with arsenic exposure. The histopathological lesions in the testes were present in the form of the loss of germinal epithelium and atrophy of Leydig cells. Supplementation of vitamin C however ameliorated the adverse effects of arsenic on semen quality and hormones. The histopathological lesions were also ameliorated due to vitamin C treatment. This study demonstrates that arsenic can adversely affect reproductive endpoints in Teddy goat bucks and supports the hypothesis that vitamin C is an effective treatment in arsenic-induced toxicosis. This study has high significance for Pakistan, as water contaminated with arsenic is a top health concern and is a recurring issue for both domestic animals and humans.


Subject(s)
Goats , Hematology , Adult , Animals , Arsenites , Ascorbic Acid , Humans , Male , Pakistan , Semen , Semen Analysis , Sodium Compounds , Sperm Count , Spermatozoa , Testosterone
SELECTION OF CITATIONS
SEARCH DETAIL