Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
World J Clin Cases ; 9(31): 9333-9349, 2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34877270

ABSTRACT

Inflammation is one of the primary factors associated with the causation and/or progression of several lifestyle disorders, including obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). NAFLD is a spectrum of disorders, and starts with simple steatosis, progresses to non-alcoholic steatohepatitis, and then advances to fibrosis, cirrhosis and finally, hepatocellular carcinoma, due to perpetual cycles of insults caused by inflammation and other cellular stress. Emerging evidence has documented that patients with NAFLD have severe coronavirus disease 2019 (COVID-19), and patients with COVID-19 have a higher liver injury and mortality. Although the exact cause or mechanism is not known, inflammatory cytokine storm is a characteristic feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is known to be associated with higher mortality among COVID-19 patients. Therefore, the COVID-19 pandemic seems to be a major concern in NAFLD patients, who have contracted SARS-CoV-2 infection and develop COVID-19. This is evident in patients at any stage of the NAFLD spectrum, as the inflammatory cytokine storm may cause and/or aggravate the progression or severity of NAFLD. Thus, there is a need for resolution of the inflammatory cytokine storm in these patients. A large body of evidence has demonstrated the efficacy of omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFA) in NAFLD conditions, due to their anti-inflammatory, immunomodulatory and anti-viral properties. Therefore, intervention with ω-3 LCPUFA, an effective pharmaconutrient along with the standard treatment for COVID-19 may be useful in the management of the NAFLD spectrum in COVID-19 patients with pre-existing NAFLD conditions by resolving the inflammatory cytokine storm and thereby attenuating its progression. Although there are challenges in implementation, optimistically they can be circumvented and the pharmaconutrition strategy may be potentially helpful in tackling both the pandemics; NAFLD and COVID-19 at least in this subset of patients.

2.
Nutr Metab Insights ; 14: 11786388211014917, 2021.
Article in English | MEDLINE | ID: mdl-34349520

ABSTRACT

Nutritional intervention is a key strategy in the control and management of non-communicable diseases. Here, initially, we evaluated the effects of carrot juice (CJ) on some of the physical and biochemical parameters in rats fed with high-fructose diet, then in type 2 diabetic subjects. For the animal study, weanling male Wistar rats were given control (n = 6) or high fructose (HFr; n = 24) diet for 8 weeks. Then, the HFr group rats were subdivided into 4 groups (n = 6 in each) and continued either on HFr diet or shifted to control diet, with or without CJ (0.3 mg ß-carotene) ingestion orally for 8 weeks. At the end, the ingestion of CJ reversed the HFr-induced adiposity (23 ± 1.6 vs 18 ± 1.1, P = .038), hypertriglyceridemia (182 ± 18.2 vs 90 ± 10.5 mg/dL, P<0.001), and hyperinsulinemia (81 ± 14.7 vs 40 ± 7.5 µU/mL, P = .014), while increased the retinol levels in liver (240 ± 38.4 vs 492 ± 61.2 µg/g, P = .002) and adipose tissue (1.8 ± 0.09 vs 2.5 ± 0.18 µg/g, P = .026). On the other hand, in the diabetic subjects (7 males and females each, n = 14) compared to their baseline, the daily consumption of 50 mL CJ (~2400 µg ß-carotene) for 6 weeks significantly reduced the body weight (69.4 ± 4.13 vs 69.0 ± 4.09 kg, P = .014), BMI (27.4 ± 1.07 vs 27.2 ± 1.06 kg/m2, P = .007), and fat% (33.4 ± 1.87 vs 31.9 ± 2.13, P = .029) with an increase in plasma ß-carotene levels (0.21 ± 0.045 vs 0.45 ± 0.089 µmol/L, P = .044). Although CJ increased the glucose (145 ± 10.4 vs 165 ± 11.4 mg/dL, P = .039), insulin, and glycated hemoglobin levels remained unaltered. In conclusion, the consumption of carrot juice reversed the HFr-induced metabolic abnormalities in a rat model and decreased body weight and BMI of diabetic subjects.

3.
Indian J Med Res ; 144(2): 238-244, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27934803

ABSTRACT

BACKGROUND & OBJECTIVES: Hepatic scavenger receptor class B1 (SR-B1), a high-density lipoprotein (HDL) receptor, is involved in the selective uptake of HDL-associated esterified cholesterol (EC), thereby regulates cholesterol homoeostasis and improves reverse cholesterol transport. Previously, we reported in euglycaemic obese rats (WNIN/Ob strain) that feeding of vitamin A-enriched diet normalized hypercholesterolaemia, possibly through hepatic SR-B1-mediated pathway. This study was aimed to test whether it would be possible to normalize hypercholesterolaemia in glucose-intolerant obese rat model (WNIN/GR/Ob) through similar mechanism by feeding identical vitamin A-enriched diet. METHODS: In this study, 30 wk old male lean and obese rats of WNIN/GR-Ob strain were divided into two groups and received either stock diet or vitamin A-enriched diet (2.6 mg or 129 mg vitamin A/kg diet) for 14 wk. Blood and other tissues were collected for various biochemical analyses. RESULTS: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized abnormally elevated plasma HDL-cholesterol (HDL-C) levels in obese rats as compared to stock diet-fed obese groups. Further, decreased free cholesterol (FC) and increased esterified cholesterol (EC) contents of plasma cholesterol were observed, which were reflected in higher EC to FC ratio of vitamin A-enriched diet-fed obese rats. However, neither lecithin-cholesterol acyltransferase (LCAT) activity of plasma nor its expression (both gene and protein) in the liver were altered. On the contrary, hepatic cholesterol levels significantly increased in vitamin A-enriched diet fed obese rats. Hepatic SR-B1 expression (both mRNA and protein) remained unaltered among groups. Vitamin A-enriched diet fed obese rats showed a significant increase in hepatic low-density lipoprotein receptor mRNA levels, while the expression of genes involved in HDL synthesis, namely, ATP-binding cassette protein 1 (ABCA1) and apolipoprotein A-I, were downregulated. No such response was seen in vitamin A-supplemented lean rats as compared with their stock diet-fed lean counterparts. INTERPRETATION & CONCLUSIONS: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized HDL-C levels, possibly by regulating pathways involved in HDL synthesis and degradation, independent of hepatic SR-B1 in this glucose-intolerant obese rat model.


Subject(s)
Cholesterol/blood , Hypercholesterolemia/blood , Obesity/blood , Scavenger Receptors, Class B/biosynthesis , Vitamin A/administration & dosage , ATP Binding Cassette Transporter 1/biosynthesis , Animals , Apolipoprotein A-I/biosynthesis , Biological Transport/genetics , Cholesterol/genetics , Cholesterol, HDL/biosynthesis , Cholesterol, HDL/blood , Diet , Disease Models, Animal , Gene Expression Regulation , Humans , Hypercholesterolemia/diet therapy , Hypercholesterolemia/genetics , Liver/metabolism , Male , Metabolic Networks and Pathways/genetics , Obesity/diet therapy , Obesity/genetics , Phosphatidylcholine-Sterol O-Acyltransferase/blood , Rats , Scavenger Receptors, Class B/genetics , Vitamin A/metabolism
4.
Indian J Med Res ; 141(3): 275-84, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25963488

ABSTRACT

During the last century, vitamin A has evolved from its classical role as a fat-soluble vitamin and attained the status of para-/autocrine hormone. Besides its well-established role in embryogenesis, growth and development, reproduction and vision, vitamin A has also been implicated in several other physiological processes. Emerging experimental evidences emphasize adipose tissue as an active endocrine organ with great propensity to continuous growth (throughout life). Due to various genetic and lifestyle factors, excess energy accumulates in adipose tissue as fat, resulting in obesity and other complications such as type 2 diabetes, hypertension, and cardiovascular disease. Recent in vitro and in vivo studies have shed light on vitamin A metabolites; retinaldehyde and retinoic acid and participation of their pathway proteins in the regulation of adipose tissue metabolism and thus, obesity. In this context, we discuss here some of our important findings, which establish the role of vitamin A (supplementation) in obesity and its associated disorders by employing an obese rat model; WNIN/Ob strain.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Hypertension/metabolism , Obesity/metabolism , Vitamin A/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Diabetes Mellitus, Type 2/pathology , Dietary Supplements , Humans , Hypertension/pathology , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance , Obesity/pathology , Rats , Vitamin A/therapeutic use
5.
Nutr Metab (Lond) ; 11(1): 45, 2014.
Article in English | MEDLINE | ID: mdl-25302071

ABSTRACT

BACKGROUND: Previously, we reported that vitamin A-enriched diet (129 mg/kg diet) intake reduces the adiposity development in obese rats of WNIN/Ob strain. Here, we hypothesize that dose lesser than 129 mg of vitamin A/kg diet would also be effective in ameliorating the development of obesity in these rats. METHODS: Five-month-old male lean and obese rats designated as A & B were divided into four subgroups (I, II, III and IV) consisting of 8 rats from each phenotype and received diets containing 2.6 mg (control group), 26 mg, 52 mg and 129 mg vitamin A/kg diet as retinyl palmitate for 20 weeks. Body composition and morphological analysis of brown adipose tissue (BAT) was analyzed. Expression of uncoupling protein 1 (UCP1), retinoic acid receptor α (RARα) and retinoid X receptor α (RXRα) in BAT and levels of Bcl2 and Bax in epididymal white adipose tissue (eWAT) were determined by immunoblotting. RESULTS: Vitamin A supplementation to obese rats at doses of 52 and 129 mg/kg diet showed reduced body weight gain and adiposity compared to control diet-fed obese rats receiving 2.6 mg of vitamin A/kg diet. In BAT of obese rats, vitamin A supplementation at doses of 26 and 52 mg of vitamin A/kg diet resulted in increased UCP1 expression with concomitant decrease in RARα and RXRα levels compared to control diet-fed obese rats. Further, transmission electron microscopy study revealed an increase in number of BAT mitochondria of obese rats supplemented with 26 and 52 mg of vitamin A/kg diet. Also, obese rats fed on 52 mg/kg diet resulted in increased apoptosis by altering the ratio of Bcl2 to Bax protein levels in eWAT. Notably, most of these changes were not observed in lean rats fed vitamin A-enriched diets. CONCLUSION: In conclusion, chronic consumption of 52 mg of vitamin A/kg diet seems to be an effective dose in ameliorating obesity possibly through mitochondriogenesis, UCP1-mediated thermogenesis in BAT and apoptosis in eWAT of obese rats. Therefore, the role of dietary vitamin A in correcting human obesity would be of unquestionable relevance and can only be addressed by future studies.

6.
J Atheroscler Thromb ; 21(11): 1197-207, 2014.
Article in English | MEDLINE | ID: mdl-25100235

ABSTRACT

AIM: Vitamin A plays a major role in lipid metabolism. Previously, we reported that chronic vitamin A feeding (129 mg/kg) for two months normalized the abnormally high plasma HDL-cholesterol (HDL-C) levels in hypercholesterolemic obese rats by upregulating the hepatic scavenger receptor class B type 1 (SR-BI) expression. In this report, we hypothesize that the administration of a dose less than 129 mg of vitamin A/kg would also be effective in lowering the plasma HDL-C levels in these rats. METHODS: Changes in the activity and expression of proteins related to RCT were analyzed together with blood parameters in five-month-old male lean and obese rats supplemented with 2.6 (control group), 26, 52 and 129 mg of vitamin A/kg as retinyl palmitate for 20 weeks. RESULTS: Vitamin A supplementation in the obese rats decreased the plasma HDL-C levels with a concomitant increase in the hepatic SR-BI expression and lipase activity compared to that observed in the control diet-fed obese rats treated with 2.6 mg of vitamin A/kg diet. Furthermore, vitamin A supplementation at doses of 52 and 129 mg/kg diet reduced the plasma lecithin cholesterol acyltransferase activity and increased the hepatic ATP-binding cassette transporter protein A1 expression in the obese rats. Interestingly, most of these changes were not observed in the lean rats fed a vitamin A-enriched diet. CONCLUSIONS: Chronic feeding of a vitamin A-enriched diet in hypercholesterolemic obese rats normalizes the plasma HDL-C level and presumably improves RCT, with an effective dose of 52 mg/kg diet. Further studies should focus on the pharmacological potential of vitamin A supplementation to correct an abnormal human obesity-associated lipoprotein metabolism.


Subject(s)
Cholesterol/metabolism , Diet , Hypercholesterolemia/metabolism , Liver/metabolism , Obesity/complications , Thinness/complications , Vitamin A/analogs & derivatives , Animals , Antioxidants/administration & dosage , Biological Transport , Diterpenes , Humans , Hypercholesterolemia/etiology , Hypercholesterolemia/pathology , Male , Rats , Rats, Mutant Strains , Retinyl Esters , Vitamin A/administration & dosage
7.
Lipids Health Dis ; 9: 111, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20932307

ABSTRACT

The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies intracellular glucocorticoid action by converting inactive glucocorticoids to their active forms in vivo. Adipose-specific overexpression of 11ß-HSD1 induces metabolic syndrome in mice, whereas 11ß-HSD1 null mice are resistant to it. Dietary trans and saturated fatty acids (TFAs and SFAs) are involved in the development of metabolic syndrome, whereas polyunsaturated fatty acids (PUFA) offer protection against this. Here, we report the effects of chronic feeding of different diets containing vanaspati (TFA rich), palm oil (SFA rich) and sunflower oil (PUFA rich) at 10%level on 11ß-HSD1 gene expression in rat retroperitoneal adipose tissue. 11ß-HSD1 gene expression was significantly higher in TFA rich diet-fed rats compared to SFA rich diet-fed rats, which in turn was significantly higher than PUFA rich diet-fed rats. Similar trend was observed in the expression of CCAAT-enhancer binding protein-α (C/EBP-α), the main transcription factor required for the expression of 11ß-HSD1. We propose that TFAs and SFAs increase local amplification of glucocorticoid action in adipose tissue by upregulating 11ß-HSD1 by altering C/EBP-α-gene expression. The increased levels of glucocorticoids in adipose tissue may lead to development of obesity and insulin resistance, thereby increasing the risk of developing metabolic syndrome.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Dietary Fats/administration & dosage , Fatty Acids/administration & dosage , Gene Expression Regulation, Enzymologic , Intra-Abdominal Fat/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Animals , Body Weight , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Dietary Fats/adverse effects , Dietary Fats/analysis , Fatty Acids/adverse effects , Fatty Acids/analysis , Fatty Acids, Unsaturated/administration & dosage , Fatty Acids, Unsaturated/analysis , Female , Insulin Resistance , Liver X Receptors , Metabolic Syndrome/epidemiology , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Palm Oil , Plant Oils/administration & dosage , Plant Oils/adverse effects , Plant Oils/chemistry , RNA, Messenger/metabolism , Rats , Rats, Inbred F344 , Reverse Transcriptase Polymerase Chain Reaction , Sunflower Oil , Trans Fatty Acids/administration & dosage , Trans Fatty Acids/adverse effects , Trans Fatty Acids/analysis
8.
Atherosclerosis ; 204(1): 136-40, 2009 May.
Article in English | MEDLINE | ID: mdl-18848326

ABSTRACT

Dietary fatty acids are known to play an important role in the development as well as prevention of dyslipidemia. In this study, we evaluated the impact of feeding polyunsaturated fatty acids (PUFAs) for a period of 4 months on various aspects of cholesterol metabolism in genetically obese mutant rats of WNIN/GR-Ob strain. Based on their phenotype, lean and obese rats were divided into two groups, A and B respectively, and further subdivided depending on the type of dietary fat. Control groups of rats (AI and BI), were fed on 4% groundnut oil, which was replaced by safflower oil; n-6 PUFA diet (AII and BII) or oil blend of safflower and soybean oil, n-6 and n-3 PUFA diet (AIII and BIII) in the experimental groups. It was observed that feeding of diets with n-6 PUFA or a combination of n-6 and n-3 PUFAs resulted in marked elevation of plasma levels of total as well as HDL cholesterol and triglycerides in obese rats (BII and BIII), as compared to the control group (BI). Further, plasma HDL fraction of obese rats had elevated apolipoprotein E (apo E), while apo A1 levels remained unaltered. Increased lecithin: cholesterol acyltransferase (LCAT) activity and cholesteryl ester (CE) levels in the plasma and enhanced expression of hepatic scavenger receptor class B type1 (SR-B1) were also observed in PUFA-fed obese rats (BII and BIII). However, there was no change in hepatic ATP-binding cassette transporter protein A1 (ABCA1) levels in the obese rats fed on PUFA rich diets. Intriguingly, though these changes favor efficient removal of cholesterol from peripheral tissues, its esterification and enhanced clearance through reverse cholesterol transport (RCT); plasma HDL-C remained higher in these genetically dyslipidemic obese rats, thereby pointing at yet unknown mechanisms, involved in cholesterol homeostasis, which need to be studied.


Subject(s)
Cholesterol/metabolism , Dietary Fats/administration & dosage , Dyslipidemias/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Liver/metabolism , Obesity/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Animals , Apolipoproteins/blood , Cholesterol/blood , Cholesterol Esters/blood , Cholesterol, HDL/blood , Dietary Fats/metabolism , Disease Models, Animal , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Male , Peanut Oil , Phosphatidylcholine-Sterol O-Acyltransferase/blood , Plant Oils/administration & dosage , Rats , Rats, Mutant Strains , Safflower Oil/administration & dosage , Scavenger Receptors, Class B/metabolism , Soybean Oil/administration & dosage , Triglycerides/blood
9.
Obesity (Silver Spring) ; 15(2): 322-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17299104

ABSTRACT

OBJECTIVE: Scavenger receptor class BI (SR-BI), authentic high-density lipoprotein (HDL) receptors expressed in liver, are known to play an important role in HDL-cholesterol (C) metabolism and reverse cholesterol transport. Interestingly, obese rats of WNIN/Ob strain have abnormally elevated levels of serum HDL-C compared with their lean counterparts. Based on the well-established role of SR-B1 in HDL-C metabolism, it was hypothesized that these obese rats may have an underexpression of hepatic SR-B1 receptors. In view of the significant role of vitamin A in energy expenditure and obesity, we also tested whether vitamin A supplementation can correct abnormal HDL-C metabolism. RESEARCH METHODS AND PROCEDURES: To test this hypothesis, 7-month-old male lean and obese rats of WNIN/Ob strain were divided into two groups; each group was subdivided into two subgroups consisting of six lean and six obese rats and received diets containing either 2.6 or 129 mg vitamin A/kg diet for 2 months. RESULTS: At the end, obese rats receiving normal levels of vitamin A diet showed high serum HDL-C and lower hepatic SR-BI expression levels compared with lean counterparts. Furthermore, chronic dietary vitamin A supplementation resulted in overexpression of hepatic SR-BI receptors (protein and gene) with concomitant reduction in serum HDL-C levels in obese rats. DISCUSSION: Thus, our observations highlight the role of vitamin A in reverse cholesterol transport through up-regulation of hepatic SR-BI receptors and, thereby, HDL-C homeostasis in obese rats of WNIN/Ob strain.


Subject(s)
Cholesterol, HDL/metabolism , Obesity/metabolism , Scavenger Receptors, Class B/metabolism , Vitamin A/pharmacology , Animals , Cholesterol, HDL/blood , Diet , Lipids/analysis , Lipids/blood , Liver/chemistry , Liver/drug effects , Male , Obesity/blood , Obesity/pathology , RNA, Messenger/metabolism , Rats , Rats, Inbred Strains , Scavenger Receptors, Class B/blood
10.
Obesity (Silver Spring) ; 14(1): 52-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16493122

ABSTRACT

OBJECTIVE: To understand the possible role of chronic dietary high vitamin A supplementation in body weight regulation and obesity using a novel WNIN/Ob obese rat model developed at the National Centre for Laboratory Animal Sciences of National Institute of Nutrition, India. RESEARCH METHODS AND PROCEDURES: Thirty-six 7-month-old male rats of lean, carrier, and obese phenotypes were broadly divided into two groups; each group was subdivided into three subgroups consisting of six lean, six carrier, and six obese rats and received diets containing either 2.6 or 129 mg vitamin A/kg of diet for 2 months. Body weight gain, food intake, and weights of various organs were recorded. Adiposity index and BMI were calculated. Serum and liver retinol and brown adipose tissue (BAT)-uncoupling protein1 (UCP1) mRNA expression levels were quantified. RESULTS: Chronic feeding of high but non-toxic doses of vitamin A through diet significantly reduced (P < or = 0.05) body weight gain, adiposity index, and retroperitoneal white adipose tissue mass (without affecting food intake) in obese rats compared with their lean and carrier counterparts. In general, vitamin A treatment significantly improved hepatic retinol stores (P < or = 0.05) in all phenotypes without affecting serum free retinol levels. However, augmented BAT-UCP1 expression was observed only in carrier and obese rats (whose basal expression was low). DISCUSSION: Our data suggest that chronic dietary vitamin A supplementation at high doses effectively regulates obesity in obese phenotype of the WNIN/Ob strain, possibly through up-regulation of the BAT-UCP1 gene and associated adipose tissue loss. However, in vitamin A-supplemented lean and carrier rats, changes in adiposity could not be related to BAT-UCP1 expression levels.


Subject(s)
Energy Intake/drug effects , Obesity/metabolism , Vitamin A/pharmacology , Vitamins/pharmacology , Weight Gain/drug effects , Adipose Tissue/metabolism , Animals , Carrier Proteins/metabolism , Dietary Supplements , Dose-Response Relationship, Drug , Ion Channels , Liver/metabolism , Male , Membrane Proteins/metabolism , Mitochondrial Proteins , Obesity/genetics , Phenotype , Random Allocation , Rats , Rats, Inbred Strains , Uncoupling Protein 1 , Vitamin A/administration & dosage , Vitamin A/metabolism , Vitamins/administration & dosage , Vitamins/metabolism
11.
J Nutr Sci Vitaminol (Tokyo) ; 48(5): 365-70, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12656209

ABSTRACT

Three experimental diets with varied n-6-to-n-3 fatty acid ratios (120, 40 and 8) were prepared by a suitable blending of safflower oil containing 72.5% linoleic (18:2 n-6) acid and non-detectable levels of alpha-linolenic (18:3 n-3) acid, and soybean oil having 56.1% linoleic (18:2 n-6) acid and 7.9% alpha-linolenic (18:3 n-3) acid. These diets were fed to weanling female Wistar/NIN (inbred) rats for 16 wk to assess the impact of altered dietary n-6-to-n-3 fatty acid ratio on erythrocyte membrane (EMS) cholesterol, phospholipids, fatty acid composition and activities of membrane-bound enzymes such as Na+,K+-ATPase, Ca2+, Mg2+-ATPase and acetylcholinesterase. Activities of total and ouabain-sensitive-ATPases were significantly higher in the erythrocyte membranes of rats fed diets with a n-6-to-n-3 fatty acid ratio of 40 compared to other groups, whereas the erythrocyte membrane-bound acetylcholinesterase was significantly different among the three groups. The highest and lowest activities for this enzyme were observed in the dietary groups with n-6-to-n-3 fatty acid ratios of 8 and 40 respectively. However, the EMS of rats fed diets with a n-6-to-n-3 fatty acid ratio of 40 alone had significantly higher Ca2+,Mg2+-ATPase compared to those of other two groups. Significant increases were observed in absolute amounts of cholesterol, phospholipids and molar ratio of cholesterol to phospholipids in the EMS of rats fed a diet with a very high 18:2 n-6-to-18:3 n-3 fatty acid ratio (120) as compared to those from the dietary group with 18:2 n-6-to-18:3 n-3 fatty acid ratio (40), which had the lowest levels of cholesterol, phospholipids and cholesterol-to-phospholipid molar ratio. On the other hand, the EMS from rats fed a diet with a very low n-6-to-n-3 fatty acid ratio (8) had significantly lower cholesterol and higher proportions of stearic (18:0), oleic (18:1 n-9), eicosapentaenoic (20:5 n-3), and docosahexaenoic acids, and a higher ratio of docosahexaenoic (22:6 n-3) acid-to-a-linoleic (18:3 n-3) acid compared to the EMS from a very high n-6-to-n-3 fatty acid ratio of 120. Although these changes in EM fatty acid profiles were expected of the respective dietary regimens, the observed changes in the activities of membrane-bound enzymes could have resulted from their interaction with membrane cholesterol, phospholipids and fatty acyl chains.


Subject(s)
Dietary Fats/administration & dosage , Erythrocyte Membrane/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Unsaturated/administration & dosage , Lipid Metabolism , Acetylcholinesterase/drug effects , Analysis of Variance , Animals , Ca(2+) Mg(2+)-ATPase/drug effects , Erythrocyte Membrane/drug effects , Fatty Acids, Omega-6 , Female , Rats , Rats, Wistar , Safflower Oil/administration & dosage , Sodium-Potassium-Exchanging ATPase/drug effects , Soybean Oil/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL