Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Metab ; 4(7): 901-917, 2022 07.
Article in English | MEDLINE | ID: mdl-35879461

ABSTRACT

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Subject(s)
Breast Feeding , Obesity , Animals , Female , Fibroblast Growth Factors , Humans , Hypothalamus/metabolism , Liver/metabolism , Mice , Obesity/metabolism , Obesity/prevention & control , Rats
2.
Nat Metab ; 1(8): 811-829, 2019 08.
Article in English | MEDLINE | ID: mdl-31579887

ABSTRACT

Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.


Subject(s)
Adipose Tissue, Brown/metabolism , Dopamine/metabolism , Hypothalamus/metabolism , Signal Transduction , Thermogenesis/physiology , Animals , Bromocriptine/administration & dosage , Bromocriptine/pharmacology , Female , Humans , Hypothalamus/drug effects , Injections, Intraventricular , Male , Rats
3.
Proc Natl Acad Sci U S A ; 113(10): E1382-91, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26903620

ABSTRACT

Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.


Subject(s)
Association Learning/physiology , Cerebral Cortex/physiology , Neuronal Plasticity/physiology , Receptor, Serotonin, 5-HT2A/physiology , Thalamus/physiology , Animals , Blotting, Western , Cerebral Cortex/metabolism , Electrophysiological Phenomena , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Neuronal Plasticity/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Protein Kinase C/metabolism , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Synapses/metabolism , Synapses/physiology , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Thalamus/metabolism , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL