Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
DNA Res ; 20(1): 93-108, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23297299

ABSTRACT

Olive breeding programmes are focused on selecting for traits as short juvenile period, plant architecture suited for mechanical harvest, or oil characteristics, including fatty acid composition, phenolic, and volatile compounds to suit new markets. Understanding the molecular basis of these characteristics and improving the efficiency of such breeding programmes require the development of genomic information and tools. However, despite its economic relevance, genomic information on olive or closely related species is still scarce. We have applied Sanger and 454 pyrosequencing technologies to generate close to 2 million reads from 12 cDNA libraries obtained from the Picual, Arbequina, and Lechin de Sevilla cultivars and seedlings from a segregating progeny of a Picual × Arbequina cross. The libraries include fruit mesocarp and seeds at three relevant developmental stages, young stems and leaves, active juvenile and adult buds as well as dormant buds, and juvenile and adult roots. The reads were assembled by library or tissue and then assembled together into 81 020 unigenes with an average size of 496 bases. Here, we report their assembly and their functional annotation.


Subject(s)
Genome, Plant , Molecular Sequence Annotation , Olea/genetics , Transcriptome , Breeding , Databases, Genetic , Expressed Sequence Tags , Fruit/chemistry , Gene Library , Olive Oil , Plant Oils/chemistry , Seeds/genetics , Sequence Analysis, DNA
2.
BMC Genomics ; 13: 187, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22583865

ABSTRACT

BACKGROUND: L-ascorbic acid (AsA; vitamin C) is essential for all living plants where it functions as the main hydrosoluble antioxidant. It has diverse roles in the regulation of plant cell growth and expansion, photosynthesis, and hormone-regulated processes. AsA is also an essential component of the human diet, being tomato fruit one of the main sources of this vitamin. To identify genes responsible for AsA content in tomato fruit, transcriptomic studies followed by clustering analysis were applied to two groups of fruits with contrasting AsA content. These fruits were identified after AsA profiling of an F8 Recombinant Inbred Line (RIL) population generated from a cross between the domesticated species Solanum lycopersicum and the wild relative Solanum pimpinellifollium. RESULTS: We found large variability in AsA content within the RIL population with individual RILs with up to 4-fold difference in AsA content. Transcriptomic analysis identified genes whose expression correlated either positively (PVC genes) or negatively (NVC genes) with the AsA content of the fruits. Cluster analysis using SOTA allowed the identification of subsets of co-regulated genes mainly involved in hormones signaling, such as ethylene, ABA, gibberellin and auxin, rather than any of the known AsA biosynthetic genes. Data mining of the corresponding PVC and NVC orthologs in Arabidopis databases identified flagellin and other ROS-producing processes as cues resulting in differential regulation of a high percentage of the genes from both groups of co-regulated genes; more specifically, 26.6% of the orthologous PVC genes, and 15.5% of the orthologous NVC genes were induced and repressed, respectively, under flagellin22 treatment in Arabidopsis thaliana. CONCLUSION: Results here reported indicate that the content of AsA in red tomato fruit from our selected RILs are not correlated with the expression of genes involved in its biosynthesis. On the contrary, the data presented here supports that AsA content in tomato fruit co-regulates with genes involved in hormone signaling and they are dependent on the oxidative status of the fruit.


Subject(s)
Ascorbic Acid/metabolism , Fruit/metabolism , Genes, Plant/physiology , Solanum/metabolism , Cluster Analysis , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Oxidation-Reduction , Solanum/genetics
3.
Plant Cell ; 24(2): 395-414, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22374394

ABSTRACT

The term vitamin describes a small group of organic compounds that are absolutely required in the human diet. Although for the most part, dependency criteria are met in developed countries through balanced diets, this is not the case for the five billion people in developing countries who depend predominantly on a single staple crop for survival. Thus, providing a more balanced vitamin intake from high-quality food remains one of the grandest challenges for global human nutrition in the coming decade(s). Here, we describe the known importance of vitamins in human health and current knowledge on their metabolism in plants. Deficits in developing countries are a combined consequence of a paucity of specific vitamins in major food staple crops, losses during crop processing, and/or overreliance on a single species as a primary food source. We discuss the role that plant science can play in addressing this problem and review successful engineering of vitamin pathways. We conclude that while considerable advances have been made in understanding vitamin metabolic pathways in plants, more cross-disciplinary approaches must be adopted to provide adequate levels of all vitamins in the major staple crops to eradicate vitamin deficiencies from the global population.


Subject(s)
Avitaminosis/prevention & control , Crops, Agricultural/metabolism , Plants/metabolism , Vitamins/biosynthesis , Breeding , Chromosome Mapping , Developing Countries , Food, Fortified , Genetic Variation , Humans , Plants/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
Plant Physiol ; 158(3): 1252-66, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22232384

ABSTRACT

TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins are characterized by the presence of six tetratricopeptide repeats in conserved positions and a carboxyl-terminal region known as the thioredoxin-like domain with homology to thioredoxins. In Arabidopsis (Arabidopsis thaliana), the TTL gene family is composed by four members, and the founder member, TTL1, is required for osmotic stress tolerance. Analysis of sequenced genomes indicates that TTL genes are specific to land plants. In this study, we report the expression profiles of Arabidopsis TTL genes using data mining and promoter-reporter ß-glucuronidase fusions. Our results show that TTL1, TTL3, and TTL4 display ubiquitous expression in normal growing conditions but differential expression patterns in response to osmotic and NaCl stresses. TTL2 shows a very different expression pattern, being specific to pollen grains. Consistent with the expression data, ttl1, ttl3, and ttl4 mutants show reduced root growth under osmotic stress, and the analysis of double and triple mutants indicates that TTL1, TTL3, and TTL4 have partially overlapping yet specific functions in abiotic stress tolerance while TTL2 is involved in male gametophytic transmission.


Subject(s)
Adaptation, Physiological , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Stress, Physiological , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/classification , Arabidopsis Proteins/genetics , Computational Biology , Data Mining , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genes, Reporter , Glucuronidase/genetics , Glucuronidase/metabolism , Multigene Family , Mutation , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/physiology , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Pollen/genetics , Pollen/metabolism , Pollen/physiology , Promoter Regions, Genetic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sodium Chloride/pharmacology
5.
Plant J ; 54(1): 43-55, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18088306

ABSTRACT

In addition to the role of the cell wall as a physical barrier against pathogens, some of its constituents, such as pectin-derived oligogalacturonides (OGA), are essential components for elicitation of defence responses. To investigate how modifications of pectin alter defence responses, we expressed the fruit-specific Fragaria x ananassa pectin methyl esterase FaPE1 in the wild strawberry Fragaria vesca. Pectin from transgenic ripe fruits differed from the wild-type with regard to the degree and pattern of methyl esterification, as well as the average size of pectin polymers. Purified oligogalacturonides from the transgenic fruits showed a reduced degree of esterification compared to oligogalacturonides from wild-type fruits. This reduced esterification is necessary to elicit defence responses in strawberry. The transgenic F. vesca lines had constitutively activated pathogen defence responses, resulting in higher resistance to the necrotropic fungus Botrytis cinerea. Further studies in F. vesca and Nicotiana benthamiana leaves showed that the elicitation capacity of the oligogalacturonides is more specific than previously envisaged.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Fragaria/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Uronic Acids/metabolism , Botrytis/physiology , Fruit/metabolism , Gene Expression Regulation, Plant/physiology , Pectins/chemistry , Pectins/metabolism , Plants, Genetically Modified
6.
Plant Physiol ; 128(2): 751-9, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11842178

ABSTRACT

Strawberry (Fragaria x ananassa, Duch., cv Chandler) is a soft fruit with a short postharvest life, mainly due to a rapid lost of firm texture. To control the strawberry fruit softening, we obtained transgenic plants that incorporate an antisense sequence of a strawberry pectate lyase gene under the control of the 35S promoter. Forty-one independent transgenic lines (Apel lines) were obtained, propagated in the greenhouse for agronomical analysis, and compared with control plants, non-transformed plants, and transgenic lines transformed with the pGUSINT plasmid. Total yield was significantly reduced in 33 of the 41 Apel lines. At the stage of full ripen, no differences in color, size, shape, and weight were observed between Apel and control fruit. However, in most of the Apel lines, ripened fruits were significantly firmer than controls. Six Apel lines were selected for further analysis. In all these lines, the pectate lyase gene expression in ripened fruit was 30% lower than in control, being totally suppressed in three of them. Cell wall material isolated from ripened Apel fruit showed a lower degree of in vitro swelling and a lower amount of ionically bound pectins than control fruit. An analysis of firmness at three different stages of fruit development (green, white, and red) showed that the highest reduction of softening in Apel fruit occurred during the transition from the white to the red stage. The postharvest softening of Apel fruit was also diminished. Our results indicate that pectate lyase gene is an excellent candidate for biotechnological improvement of fruit softening in strawberry.


Subject(s)
Fruit/enzymology , Polysaccharide-Lyases/genetics , Rosaceae/enzymology , Agrobacterium tumefaciens/genetics , Cell Wall/metabolism , DNA, Antisense/genetics , Fruit/genetics , Gene Expression Regulation, Enzymologic , Pectins/metabolism , Phenotype , Plants, Genetically Modified , Polysaccharide-Lyases/metabolism , Rosaceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL