Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Heredity (Edinb) ; 93(1): 43-50, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15138451

ABSTRACT

Male-sterility was found in diploid dandelions from two widely separated populations from France, and its inheritance was analysed by crossing a diploid male-sterile dandelion to diploid sexuals and triploid apomicts. Nuclear genetic variation, found in full-sib families, segregated for male-fertility, partial male-sterility, and full male-sterility, and also segregated for small-sized versus normally sized pollen. The crossing results are best explained by a cytoplasmic male-sterility factor in combination with two dominant restorer genes. Involvement of the cytoplasmic male-sterility factor was further investigated by chloroplast haplotyping. Male-sterility was exclusively associated with a rare chloroplast haplotype (designated 16b). This haplotype was found in seven male-sterile plants and one (apparently restored) male-fertile individual but does not occur in 110 co-existing male-fertile plants and not in several hundreds of individuals previously haplotyped. Apomicts with cytoplasmic male sterility were generated in some test crosses. This raises the question as to whether the male sterility found in natural dandelion apomicts, is of cytoplasmic or of nuclear genetic nature. As many breeding systems in Taraxacum are involved in shaping population structure, it will be difficult to predict the evolutionary consequences of nuclear-cytoplasmic male-sterility for this species complex.


Subject(s)
Diploidy , Taraxacum/genetics , Cell Nucleus/physiology , Chloroplasts/genetics , Crosses, Genetic , Cytoplasm/physiology , Fertility , Genetic Variation , Haplotypes , Phenotype , Pollen/genetics
2.
Mol Ecol ; 9(1): 1-8, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10652071

ABSTRACT

Highly variable amplified fragment length polymorphism (AFLP) fingerprints of triploid apomictic dandelions obtained from three localities in an area where diploids are lacking were analysed to infer the predominant modes of reproduction. The distribution of markers was analysed using character compatibility to infer whether many genotypes agree with a tree-like structure in the data set. The presence of incompatible character state combinations (matrix incompatibility; MI) was used as a measure of genetic exchange. The detection of overrepresented genotypes, of which some were widespread, confirmed asexual reproduction. Not all genotypes were overrepresented; approximately half of the genotypes in the three localities were found only once. Because, in terms of genotype frequencies, only a part of the genetic variation is described, more important aspects of the molecular data such as relationships between markers or genotypes have been studied. The analysis of character compatibility indicated a disagreement of the data with a clonal structure. Nearly all genotypes contributed to MI and this contribution varied considerably among genotypes in each sampled locality. A gradual decrease of matrix incompatibility upon successive deletion of genotypes showing the highest contribution to MI indicated that marker distribution of virtually all genotypes disagreed with a tree-like structure in the data. This result suggested that many genotypes were separated by one or more sexual generations. Consistent with this conclusion was the fact that markers that show a low probability of contributing to MI are different in every sampled locality, which is most easily explained as the result of recombination. Apparently, asexual reproduction has resulted in overrepresented, widespread genotypes but sexual recombination has also substantially contributed to genetic variation in the sites studied.


Subject(s)
Asteraceae/genetics , Genetic Markers/genetics , Polymorphism, Genetic/genetics , Polyploidy , Recombination, Genetic/genetics , DNA Fingerprinting , DNA Primers , Gene Frequency , Genetic Variation/genetics , Genotype , Geography , Mutation/genetics , Pollen/genetics , Polymerase Chain Reaction , Probability , Reproduction/genetics , Reproduction, Asexual/genetics
SELECTION OF CITATIONS
SEARCH DETAIL