Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Int Soc Sports Nutr ; 20(1): 2263409, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800468

ABSTRACT

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.


Subject(s)
Amino Acids , Muscle, Skeletal , Humans , Leucine , Amino Acids/pharmacology , Muscle Proteins/metabolism , Dietary Supplements
2.
J Int Soc Sports Nutr ; 20(1): 2237952, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37498180

ABSTRACT

Based on review and critical analysis of the literature regarding the contents and physiological effects of coffee related to physical and cognitive performance conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society:(1) Coffee is a complex matrix of hundreds of compounds. These are consumed with broad variability based upon serving size, bean type (e.g. common Arabica vs. Robusta), and brew method (water temperature, roasting method, grind size, time, and equipment).(2) Coffee's constituents, including but not limited to caffeine, have neuromuscular, antioxidant, endocrine, cognitive, and metabolic (e.g. glucose disposal and vasodilation) effects that impact exercise performance and recovery.(3) Coffee's physiologic effects are influenced by dose, timing, habituation to a small degree (to coffee or caffeine), nutrigenetics, and potentially by gut microbiota differences, sex, and training status.(4) Coffee and/or its components improve performance across a temporal range of activities from reaction time, through brief power exercises, and into the aerobic time frame in most but not all studies. These broad and varied effects have been demonstrated in men (mostly) and in women, with effects that can differ from caffeine ingestion, per se. More research is needed.(5) Optimal dosing and timing are approximately two to four cups (approximately 473-946 ml or 16-32 oz.) of typical hot-brewed or reconstituted instant coffee (depending on individual sensitivity and body size), providing a caffeine equivalent of 3-6 mg/kg (among other components such as chlorogenic acids at approximately 100-400 mg per cup) 60 min prior to exercise.(6) Coffee has a history of controversy regarding side effects but is generally considered safe and beneficial for healthy, exercising individuals in the dose range above.(7) Coffee can serve as a vehicle for other dietary supplements, and it can interact with nutrients in other foods.(8) A dearth of literature exists examining coffee-specific ergogenic and recovery effects, as well as variability in the operational definition of "coffee," making conclusions more challenging than when examining caffeine in its many other forms of delivery (capsules, energy drinks, "pre-workout" powders, gum, etc.).


Subject(s)
Athletic Performance , Coffee , Male , Female , Humans , Caffeine/pharmacology , Athletic Performance/physiology , Chlorogenic Acid/analysis , Exercise
3.
J Int Soc Sports Nutr ; 20(1): 2204066, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37221858

ABSTRACT

Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg-1. For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1·day-1) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1·d-1). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.


Subject(s)
Creatine , Sports , Female , Humans , Male , Progesterone , Athletes , Amino Acids
4.
Nutrients ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615794

ABSTRACT

Military activities often involve high-intensity exercise that can disrupt antioxidant capacity. We investigated the effects of oregano supplementation on muscle damage, oxidative stress, and plasma antioxidant markers of soldiers performing the army combat readiness test (ACRT). Twenty-four healthy male soldiers (age: 24 ± 3 years, height: 167 ± 14 cm, mass: 66 ± 3 kg) were randomized into a placebo group (n = 12) or an oregano supplementation group (n = 12). The participants consumed a capsule containing 500 mg Origanum vulgare immediately after completing the ACRT. Blood sampling was taken before exercise, immediately after exercise, and 60 and 120 min after oregano consumption. Plasma levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAC), and glutathione peroxidase (GPX) were measured at the four time points. The time × group interactions were found for CK (p < 0.0001, d = 3.64), LDH (p < 0.0001, d = 1.64), MDA (p < 0.0001, d = 9.94), SOD (p < 0.0001, d = 1.88), TAC (p < 0.0001, d = 5.68) and GPX (p < 0.0001, d = 2.38). In all variables, the difference between placebo and oregano groups were significant at 60 (p < 0.0001) and 120 (p < 0.0001) minutes after ACRT test. The main effect of time was also significant for all the variables (p < 0.0001). Our results suggest that oregano supplementation has the potential to reduce muscle damage and increase oxidative capacity following ACRT. Supplementation with oregano may serve as a dietary strategy to increase preparedness and promote recovery in military recruits.


Subject(s)
Military Personnel , Origanum , Humans , Male , Young Adult , Adult , Antioxidants/pharmacology , Dietary Supplements , Oxidative Stress , Creatine Kinase , Superoxide Dismutase/metabolism , Muscles/metabolism
5.
J Int Soc Sports Nutr ; 18(1): 39, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34039357

ABSTRACT

BACKGROUND: Taurine has become a popular supplement among athletes attempting to improve performance. While the effectiveness of taurine as an ergogenic aid remains controversial, this paper summarizes the current evidence regarding the efficacy of taurine in aerobic and anaerobic performance, metabolic stress, muscle soreness, and recovery. METHODS: Google Scholar, Web of Science, and MedLine (PubMed) searches were conducted through September 2020. Peer-reviewed studies that investigated taurine as a single ingredient at dosages of < 1 g - 6 g, ranging from 10 to 15 min-to-2 h prior to exercise bout or chronic dose (7 days- 8 weeks) of consumption were included. Articles were excluded if taurine was not the primary or only ingredient in a supplement or food source, not published in peer-reviewed journals, if participants were older than 50 years, articles published before 1999, animal studies, or included participants with health issues. A total of 19 studies met the inclusion criteria for the review. RESULTS: Key results include improvements in the following: VO2max, time to exhaustion (TTE; n = 5 articles), 3 or 4 km time-trial (n = 2 articles), anaerobic performance (n = 7 articles), muscle damage (n = 3 articles), peak power (n = 2 articles), recovery (n = 1 article). Taurine also caused a change in metabolites: decrease in lactate, creatine kinase, phosphorus, inflammatory markers, and improved glycolytic/fat oxidation markers (n = 5 articles). Taurine dosing appears to be effective at ~ 1-3 g/day acutely across a span of 6-15 days (1-3 h before an activity) which may improve aerobic performance (TTE), anaerobic performance (strength, power), recovery (DOMS), and a decrease in metabolic markers (creatine kinase, lactate, inorganic phosphate). CONCLUSIONS: Limited and varied findings prohibit definitive conclusions regarding the efficacy of taurine on aerobic and anaerobic performance and metabolic outcomes. There are mixed findings for the effect of taurine consumption on improving recovery from training bouts and/or mitigating muscle damage. The timing of taurine ingestion as well as the type of exercise protocol performed may contribute to the effectiveness of taurine as an ergogenic aid. More investigations are needed to better understand the potential effects of taurine supplementation on aerobic and anaerobic performance, muscle damage, metabolic stress, and recovery.


Subject(s)
Athletic Performance/physiology , Dietary Supplements , Performance-Enhancing Substances/administration & dosage , Taurine/administration & dosage , Blood Glucose/metabolism , Body Temperature Regulation , Calcium/metabolism , Energy Metabolism , Humans , Inflammation/prevention & control , Lactic Acid/blood , Lipid Metabolism , Muscle Strength , Myalgia/prevention & control , Oxidative Stress , Oxygen Consumption , Performance-Enhancing Substances/pharmacokinetics , Taurine/pharmacokinetics
6.
J Int Soc Sports Nutr ; 18(1): 13, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557850

ABSTRACT

Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.


Subject(s)
Creatine/adverse effects , Dietary Supplements/adverse effects , Adiposity/drug effects , Adolescent , Adult , Alopecia/chemically induced , Body Water/drug effects , Child , Creatine/administration & dosage , Creatine/chemistry , Creatine/metabolism , Dehydration/chemically induced , Female , Humans , Kidney/drug effects , Kidney Diseases/chemically induced , Male , Muscle Cramp/chemically induced , Muscle, Skeletal/drug effects , Sex Factors , Sports Nutritional Physiological Phenomena , Testosterone/metabolism , Testosterone Congeners/pharmacology
7.
J Strength Cond Res ; 34(11): 3173-3181, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33105368

ABSTRACT

Toohey, JC, Townsend, JR, Johnson, SB, Toy, AM, Vantrease, WC, Bender, D, Crimi, CC, Stowers, KL, Ruiz, MD, VanDusseldorp, TA, Feito, Y, and Mangine, GT. Effects of probiotic (Bacillus subtilis) supplementation during offseason resistance training in female Division I athletes. J Strength Cond Res 34(11): 3173-3181, 2020-We examined the effects of probiotic (Bacillus subtilis) supplementation during offseason training in collegiate athletes. Twenty-three Division I female athletes (19.6 ± 1.0 years, 67.5 ± 7.4 kg, and 170.6 ± 6.8 cm) participated in this study and were randomized into either a probiotic (n = 11; DE111) or placebo (n = 12; PL) group while counterbalancing groups for sport. Athletes completed a 10-week resistance training program during the offseason, which consisted of 3-4 workouts per week of upper- and lower-body exercises and sport-specific training. Athletes consumed DE111 (DE111; 5 billion CFU/day) or PL supplement daily for the entire 10-week program. Before and after training, all athletes underwent 1 repetition maximum (1RM) strength testing (squat, deadlift, and bench press), performance testing (vertical jump and pro-agility), and isometric midthigh pull testing. Body composition (body fat [BF]%) was completed using BODPOD and bioelectrical impedance analysis, as well as muscle thickness (MT) measurement of the rectus femoris (RF) and vastus lateralis using ultrasonography. Separate repeated-measures analyses of variance were used to analyze all data. Significant (p ≤ 0.05) main effects for time were observed for improved squat 1RM, deadlift 1RM, bench press 1RM, vertical jump, RF MT, and BF%. Of these, a significant group × time interaction was noted for BF% (p = 0.015), where greater reductions were observed in DE111 (-2.05 ± 1.38%) compared with PL (-0.2 ± 1.6%). No other group differences were observed. These data suggest that probiotic consumption in conjunction with post-workout nutrition had no effect on physical performance but may improve body composition in female Division I soccer and volleyball players after offseason training.


Subject(s)
Dietary Supplements , Muscle Strength , Muscle, Skeletal/physiology , Probiotics/administration & dosage , Resistance Training , Athletes , Bacillus subtilis , Body Composition , Female , Humans , Soccer/physiology , Ultrasonography , Volleyball/psychology , Young Adult
8.
Nutrients ; 12(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727162

ABSTRACT

Fish oils (FOs) are rich in omega-3 long-chain polyunsaturated fatty acids, which have been purported to enhance recovery of muscular performance and reduce soreness post-exercise. However, the most effective FO dose for optimizing recovery remains unclear. The purpose of this investigation was to examine the effect of FO supplementation dosing on the recovery of measures of muscular performance, perceived soreness, and markers of muscle damage following a rigorous bout of eccentric exercise. Thirty-two college-aged resistance-trained males (~23.6 years, 71.6 kg, 172.1 cm) were supplemented with 2, 4, 6 g/day (G) FO or placebo (PL) for ~7.5 weeks. Following 7 weeks of supplementation, pre-exercise (PRE) performance assessments of vertical jump (VJ), knee extensor strength, 40-yard sprint, T-test agility, and perceived soreness were completed prior to a bout of muscle-damaging exercise and were repeated immediately post (IP), 1-, 2-, 4-, 24-, 48-, and 72-h (H) post-exercise. Repeated measures analysis of variance indicated a treatment × time interaction (p < 0.001) for VJ and perceived soreness, but no group differences were observed at any time point. VJ returned to PRE (54.8 ± 7.9 cm) by 1H (51.8 ± 6.5 cm, p = 0.112) for 6G, while no other groups returned to baseline until 48H. Lower soreness scores were observed in 6G compared to PL at 2H (mean difference [MD] = 2.74, p = 0.046), at 24H (MD: 3.45, p < 0.001), at 48H (MD = 4.45, p < 0.001), and at 72H (MD = 3.00, p = 0.003). Supplementation with 6G of FO optimized the recovery of jump performance and muscle soreness following a damaging bout of exercise.


Subject(s)
Dietary Supplements , Exercise/physiology , Fatty Acids, Omega-3/administration & dosage , Fish Oils/administration & dosage , Myalgia/etiology , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Knee/physiology , Male , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Resistance Training , Sports Nutritional Physiological Phenomena , Young Adult
9.
J Int Soc Sports Nutr ; 17(1): 28, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460801

ABSTRACT

BACKGROUND: Muscular damage sustained while playing rugby may hinder performance across a season. ß-Hydroxy ß-Methylbutyrate (HMB) may help attenuate muscle damage and maintain lean mass and performance. This study sought to determine the effect of combining HMB with creatine monohydrate supplementation on measures of stress and muscle damage, body composition, strength and sprinting kinetics throughout a rugby season. METHODS: This double-blind, cross-over investigation recruited 16 male collegiate rugby players to provide resting blood samples and complete assessments of body composition, strength and sprinting performance prior to their fall season (PREFALL). After testing, the athletes were matched for fat-free mass and assigned to consume one of two supplementation regimens for 6 weeks: 5 g HMB + 5 g creatine per day (HMB-Cr: 20.9 ± 1.1 years; 177 ± 2 cm; 88.4 ± 4.9 kg) or 5 g creatine + 5 g placebo per day (Cr: 21.4 ± 2.1 years; 179 ± 2 cm; 88.3 ± 4.9 kg). After 6 weeks (POSTFALL), PREFALL testing was repeated in 13 of the original 16 athletes before a 10-wk wash-out period. Athletes who returned for the spring season (n = 8) repeated all fall-season procedures and testing prior to (PRESPRING) and following (POSTSPRING) their 6-wk spring season, except they were assigned to the opposite supplementation regimen. RESULTS: Linear mixed models with repeated measures revealed group x time interactions (p <  0.05) for observed for several measures but did not consistently and positively favor one group. During the fall season, knee extensor peak torque was reduced by 40.7 ± 28.1 Nm (p = 0.035) for HMB-Cr but remained consistent for Cr, and no group differences or changes were noted in the spring. In the spring, greater knee flexor rate of torque development (~ 149 Nm·sec- 1, p = 0.003) and impulse (~ 4.5 Nm·sec, p = 0.022) were observed in Cr at PRESPRING but not at POSTSPRING. Although significant interactions were found for cortisol concentrations, vastus lateralis pennation angle, and sprinting force, post-hoc analysis only revealed differences between fall and spring seasons. No other differences were observed. CONCLUSIONS: The combination of HMB and creatine monohydrate supplementation does not provide a greater ergogenic benefit compared to creatine monohydrate supplementation alone. Body composition, strength, and sprinting ability did not change across the season with creatine monohydrate supplementation.


Subject(s)
Athletic Performance/physiology , Body Composition , Creatine/administration & dosage , Dietary Supplements , Football , Valerates/administration & dosage , Creatine Kinase/blood , Cross-Over Studies , Double-Blind Method , Humans , Hydrocortisone/blood , Male , Sports Nutritional Physiological Phenomena , Young Adult
10.
Nutrients ; 12(3)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121218

ABSTRACT

Methylliberine (Dynamine®; DYM) and theacrine (Teacrine®; TCR) are purine alkaloids purported to have similar neuro-energetic effects as caffeine. There are no published human safety data on DYM, and research on TCR is limited. The purpose of this study was to examine the effect of four weeks of DYM supplementation with and without TCR on cardiovascular function and blood biomarkers. One-hundred twenty-five men and women (mean age 23.0 yrs, height 169.7 cm, body mass 72.1 kg; n = 25/group) were randomly assigned to one of five groups: low-dose DYM (100 mg), high-dose DYM (150 mg), low-dose DYM with TCR (100 mg + 50 mg), high-dose DYM with TCR (150 mg + 25 mg) , and placebo. Regardless of group and sex, significant main effects for time were noted for heart rate, systolic blood pressure, and QTc (p < 0.001), high-density lipoproteins (p = 0.002), mean corpuscular hemoglobin (p = 0.018), basophils (p = 0.006), absolute eosinophils (p = 0.010), creatinine (p = 0.004), estimated glomerular filtration rate (p = 0.037), chloride (p = 0.030), carbon dioxide (p = 0.023), bilirubin (p = 0.027), and alanine aminotransferase (p = 0.043), among others. While small changes were found in some cardiovascular and blood biomarkers, no clinically significant changes occurred. This suggests that DYM alone or in combination with TCR consumed at the dosages used in this study does not appear to negatively affect markers of health over four weeks of continuous use.


Subject(s)
Alkaloids/adverse effects , Dietary Supplements/adverse effects , Purines/adverse effects , Uric Acid/analogs & derivatives , Alkaloids/administration & dosage , Biomarkers/blood , Blood Cell Count , Blood Pressure/drug effects , Cardiovascular System/drug effects , Cardiovascular System/physiopathology , Diastole/drug effects , Diet , Female , Heart Rate/drug effects , Humans , Lipids/blood , Male , Purines/administration & dosage , Systole/drug effects , Time Factors , Uric Acid/adverse effects , Young Adult
11.
Nutrients ; 12(2)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32024038

ABSTRACT

High-intensity interval training (HIIT) involves short bursts of intense activity interspersed by periods of low-intensity exercise or rest. HIIT is a viable alternative to traditional continuous moderate-intensity endurance training to enhance maximal oxygen uptake and endurance performance. Combining nutritional strategies with HIIT may result in more favorable outcomes. The purpose of this narrative review is to highlight key dietary interventions that may augment adaptations to HIIT, including creatine monohydrate, caffeine, nitrate, sodium bicarbonate, beta-alanine, protein, and essential amino acids, as well as manipulating carbohydrate availability. Nutrient timing and potential sex differences are also discussed. Overall, sodium bicarbonate and nitrates show promise for enhancing HIIT adaptations and performance. Beta-alanine has the potential to increase training volume and intensity and improve HIIT adaptations. Caffeine and creatine have potential benefits, however, longer-term studies are lacking. Presently, there is a lack of evidence supporting high protein diets to augment HIIT. Low carbohydrate training enhances the upregulation of mitochondrial enzymes, however, there does not seem to be a performance advantage, and a periodized approach may be warranted. Lastly, potential sex differences suggest the need for future research to examine sex-specific nutritional strategies in response to HIIT.


Subject(s)
Athletic Performance/physiology , Dietary Supplements , High-Intensity Interval Training/methods , Nutrients/administration & dosage , Sports Nutritional Physiological Phenomena , Adaptation, Physiological , Female , Humans , Male , Oxygen Consumption
12.
Nutrients ; 10(10)2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30275356

ABSTRACT

This study investigated the effect of branched-chain amino acid (BCAA) supplementation on recovery from eccentric exercise. Twenty males ingested either a BCAA supplement or placebo (PLCB) prior to and following eccentric exercise. Creatine kinase (CK), vertical jump (VJ), maximal voluntary isometric contraction (MVIC), jump squat (JS) and perceived soreness were assessed. No significant (p > 0.05) group by time interaction effects were observed for CK, soreness, MVIC, VJ, or JS. CK concentrations were elevated above baseline (p < 0.001) in both groups at 4, 24, 48 and 72 hr, while CK was lower (p = 0.02) in the BCAA group at 48 hr compared to PLCB. Soreness increased significantly from baseline (p < 0.01) in both groups at all time-points; however, BCAA supplemented individuals reported less soreness (p < 0.01) at the 48 and 72 hr time-points. MVIC force output returned to baseline levels (p > 0.05) at 24, 48 and 72 hr for BCAA individuals. No significant difference between groups (p > 0.05) was detected for VJ or JS. BCAA supplementation may mitigate muscle soreness following muscle-damaging exercise. However, when consumed with a diet consisting of ~1.2 g/kg/day protein, the attenuation of muscular performance decrements or corresponding plasma CK levels are likely negligible.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Dietary Supplements , Exercise/physiology , Muscle, Skeletal/drug effects , Resistance Training/methods , Creatine Kinase/blood , Double-Blind Method , Humans , Male , Muscle Contraction/drug effects , Myalgia/blood , Myalgia/etiology , Resistance Training/adverse effects , Young Adult
13.
J Int Soc Sports Nutr ; 14: 33, 2017.
Article in English | MEDLINE | ID: mdl-28919842

ABSTRACT

The International Society of Sports Nutrition (ISSN) provides an objective and critical review regarding the timing of macronutrients in reference to healthy, exercising adults and in particular highly trained individuals on exercise performance and body composition. The following points summarize the position of the ISSN:Nutrient timing incorporates the use of methodical planning and eating of whole foods, fortified foods and dietary supplements. The timing of energy intake and the ratio of certain ingested macronutrients may enhance recovery and tissue repair, augment muscle protein synthesis (MPS), and improve mood states following high-volume or intense exercise.Endogenous glycogen stores are maximized by following a high-carbohydrate diet (8-12 g of carbohydrate/kg/day [g/kg/day]); moreover, these stores are depleted most by high volume exercise.If rapid restoration of glycogen is required (< 4 h of recovery time) then the following strategies should be considered:aggressive carbohydrate refeeding (1.2 g/kg/h) with a preference towards carbohydrate sources that have a high (> 70) glycemic indexthe addition of caffeine (3-8 mg/kg)combining carbohydrates (0.8 g/kg/h) with protein (0.2-0.4 g/kg/h) Extended (> 60 min) bouts of high intensity (> 70% VO2max) exercise challenge fuel supply and fluid regulation, thus carbohydrate should be consumed at a rate of ~30-60 g of carbohydrate/h in a 6-8% carbohydrate-electrolyte solution (6-12 fluid ounces) every 10-15 min throughout the entire exercise bout, particularly in those exercise bouts that span beyond 70 min. When carbohydrate delivery is inadequate, adding protein may help increase performance, ameliorate muscle damage, promote euglycemia and facilitate glycogen re-synthesis.Carbohydrate ingestion throughout resistance exercise (e.g., 3-6 sets of 8-12 repetition maximum [RM] using multiple exercises targeting all major muscle groups) has been shown to promote euglycemia and higher glycogen stores. Consuming carbohydrate solely or in combination with protein during resistance exercise increases muscle glycogen stores, ameliorates muscle damage, and facilitates greater acute and chronic training adaptations.Meeting the total daily intake of protein, preferably with evenly spaced protein feedings (approximately every 3 h during the day), should be viewed as a primary area of emphasis for exercising individuals.Ingestion of essential amino acids (EAA; approximately 10 g)either in free form or as part of a protein bolus of approximately 20-40 g has been shown to maximally stimulate muscle protein synthesis (MPS).Pre- and/or post-exercise nutritional interventions (carbohydrate + protein or protein alone) may operate as an effective strategy to support increases in strength and improvements in body composition. However, the size and timing of a pre-exercise meal may impact the extent to which post-exercise protein feeding is required.Post-exercise ingestion (immediately to 2-h post) of high-quality protein sources stimulates robust increases in MPS.In non-exercising scenarios, changing the frequency of meals has shown limited impact on weight loss and body composition, with stronger evidence to indicate meal frequency can favorably improve appetite and satiety. More research is needed to determine the influence of combining an exercise program with altered meal frequencies on weight loss and body composition with preliminary research indicating a potential benefit.Ingesting a 20-40 g protein dose (0.25-0.40 g/kg body mass/dose) of a high-quality source every three to 4 h appears to most favorably affect MPS rates when compared to other dietary patterns and is associated with improved body composition and performance outcomes.Consuming casein protein (~ 30-40 g) prior to sleep can acutely increase MPS and metabolic rate throughout the night without influencing lipolysis.


Subject(s)
Athletic Performance/physiology , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Glycogen/metabolism , Physical Endurance/physiology , Resistance Training , Sports Nutritional Sciences , Body Composition , Dietary Carbohydrates/metabolism , Dietary Proteins/metabolism , Energy Metabolism , Feeding Behavior , Humans , Nutritional Requirements , Societies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL