Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Drug Dev Res ; 84(1): 62-74, 2023 02.
Article in English | MEDLINE | ID: mdl-36433690

ABSTRACT

Rab GTPases are critical regulators of protein trafficking in the cell. To ensure proper cellular localization and function, Rab proteins must undergo a posttranslational modification, termed geranylgeranylation. In the isoprenoid biosynthesis pathway, the enzyme geranylgeranyl diphosphate synthase (GGDPS) generates the 20-carbon isoprenoid donor (geranylgeranyl pyrophosphate [GGPP]), which is utilized in the prenylation of Rab proteins. We have pursued the development of GGDPS inhibitors (GGSI) as a novel means to target Rab activity in cancer cells. Osteosarcoma (OS) and Ewing sarcoma (ES) are aggressive childhood bone cancers with stagnant survival statistics and limited treatment options. Here we show that GGSI treatment induces markers of the unfolded protein response (UPR) and triggers apoptotic cell death in a variety of OS and ES cell lines. Confirmation that these effects were secondary to cellular depletion of GGPP and disruption of Rab geranylgeranylation was confirmed via experiments using exogenous GGPP or specific geranylgeranyl transferase inhibitors. Furthermore, GGSI treatment disrupts cellular migration and invasion in vitro. Metabolomic profiles of OS and ES cell lines identify distinct changes in purine metabolism in GGSI-treated cells. Lastly, we demonstrate that GGSI treatment slows tumor growth in a mouse model of ES. Collectively, these studies support further development of GGSIs as a novel treatment for OS and ES.


Subject(s)
Bone Neoplasms , Osteosarcoma , Sarcoma, Ewing , Animals , Mice , Bone Neoplasms/drug therapy , Farnesyltranstransferase/metabolism , Osteosarcoma/drug therapy , Sarcoma, Ewing/drug therapy , Terpenes
2.
Pharmacol Res ; 167: 105528, 2021 05.
Article in English | MEDLINE | ID: mdl-33667685

ABSTRACT

Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthetic pathway (IBP), produces the isoprenoid (geranylgeranyl pyrophosphate, GGPP) used in protein geranylgeranylation reactions. Our prior studies utilizing triazole bisphosphonate-based GGDPS inhibitors (GGSIs) have revealed that these agents represent a novel strategy by which to induce cancer cell death, including multiple myeloma and pancreatic cancer. Statins inhibit the rate-limiting enzyme in the IBP and potentiate the effects of GGSIs in vitro. The in vivo effects of combination therapy with statins and GGSIs have not been determined. Here we evaluated the effects of combining VSW1198, a novel GGSI, with a statin (lovastatin or pravastatin) in CD-1 mice. Twice-weekly dosing with VSW1198 at the previously established maximally tolerated dose in combination with a statin led to hepatotoxicity, while once-weekly VSW1198-based combinations were feasible. No abnormalities in kidney, spleen, brain or skeletal muscle were observed with combination therapy. Combination therapy disrupted protein geranylgeranylation in vivo. Evaluation of hepatic isoprenoid levels revealed decreased GGPP levels in the single drug groups and undetectable GGPP levels in the combination groups. Additional studies with combinations using 50% dose-reductions of either VSW1198 or lovastatin revealed minimal hepatotoxicity with expected on-target effects of diminished GGPP levels and disruption of protein geranylgeranylation. Combination statin/GGSI therapy significantly slowed tumor growth in a myeloma xenograft model. Collectively, these studies are the first to demonstrate that combination IBP inhibitor therapy alters isoprenoid levels and disrupts protein geranylgeranylation in vivo as well as slows tumor growth in a myeloma xenograft model, thus providing the framework for future clinical exploration.


Subject(s)
Biosynthetic Pathways/drug effects , Diterpenes/administration & dosage , Drug Delivery Systems/methods , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Protein Prenylation/drug effects , Terpenes/metabolism , Triazoles/administration & dosage , Animals , Biosynthetic Pathways/physiology , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Diterpenes/toxicity , Drug Evaluation, Preclinical/methods , Drug Therapy, Combination , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/toxicity , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Lovastatin/administration & dosage , Lovastatin/toxicity , Mice , Mice, Inbred NOD , Mice, SCID , Pravastatin/administration & dosage , Pravastatin/toxicity , Protein Prenylation/physiology , Terpenes/antagonists & inhibitors , Triazoles/toxicity , Xenograft Model Antitumor Assays/methods
3.
J Pharmacol Exp Ther ; 371(2): 327-338, 2019 11.
Article in English | MEDLINE | ID: mdl-31420526

ABSTRACT

The enzyme geranylgeranyl diphosphate synthase (GGDPS) synthesizes the 20-carbon isoprenoid geranylgeranyl pyrophosphate, which is used in geranylgeranylation reactions. We have demonstrated that GGDPS inhibitors in multiple myeloma (MM) cells disrupt Rab geranylgeranylation, leading to inhibition of monoclonal protein trafficking, induction of the unfolded protein response pathway (UPR), and apoptosis. We have previously reported preclinical studies with the GGDPS inhibitor VSW1198, which is a mixture of homogeranyl/homoneryl triazole bisphosphonates. Additional structure-function efforts have led to development of the α-methylated derivatives RAM2093 (homogeranyl) and RAM2061 (homoneryl). As little is known regarding the impact of olefin stereochemistry on drug properties in vivo, we pursued additional preclinical evaluation of RAM2093 and RAM2061. In MM cell lines, both isomers induce activation of UPR/apoptotic markers in a concentration-dependent manner and with similar potency. Single-dose testing in CD-1 mice identified a maximum tolerated i.v. dose of 0.5 mg/kg for RAM2061 and 0.3 mg/kg for RAM2093. Liver toxicity was the primary barrier to dose escalation for both compounds. Disruption of geranylgeranylation in vivo was confirmed after multidose administration of either compound. Pharmacokinetic studies revealed plasma terminal half-lives of 29.2 ± 6 (RAM2061) and 22.1 ± 4 hours (RAM2093). Relative to RAM2061, RAM2093 levels were significantly higher in liver tissue but not in other tissues. Using MM.1S flank xenografts, we observed a significant reduction in tumor growth in mice treated with RAM2061 relative to controls. Collectively, these studies reveal olefin stereochemistry-dependent effects on GGDPS inhibitor biodistribution and confirm the in vivo efficacy of this novel therapeutic approach. SIGNIFICANCE STATEMENT: These studies reveal olefin stereochemistry-dependent effects on the in vivo properties of two novel triazole bisphosphonate inhibitors of geranylgeranyl diphosphate synthase and demonstrate the therapeutic potential of this class of inhibitors for the treatment of multiple myeloma.


Subject(s)
Alkenes/pharmacology , Diphosphonates/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Terpenes/pharmacology , Tissue Distribution/drug effects , Triazoles/pharmacology , Alkenes/chemistry , Alkenes/metabolism , Animals , Diphosphonates/chemistry , Diphosphonates/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Farnesyltranstransferase/metabolism , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Stereoisomerism , Terpenes/chemistry , Terpenes/metabolism , Tissue Distribution/physiology , Triazoles/chemistry , Triazoles/metabolism , Xenograft Model Antitumor Assays/methods
4.
Leuk Res ; 77: 17-27, 2019 02.
Article in English | MEDLINE | ID: mdl-30612055

ABSTRACT

Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that are of interest due to their cytotoxic properties. MO-OH-Nap is a novel α-substituted tropolone that induces caspase cleavage and upregulates markers associated with the unfolded protein response (UPR) in multiple myeloma (MM) cells. Given previous reports that tropolones may function as iron chelators, we investigated the effects of MO-OH-Nap, as well as the known iron chelator deferoxamine (DFO), in MM cells in the presence or absence of supplemental iron. The ability of MO-OH-Nap to induce apoptosis and upregulate markers of the UPR could be completely prevented by co-incubation with either ferric chloride or ammonium ferrous sulfate. Iron also completely prevented the decrease in BrdU incorporation induced by either DFO or MO-OH-Nap. Ferrozine assays demonstrated that MO-OH-Nap directly chelates iron. Furthermore, MO-OH-Nap upregulates cell surface expression and mRNA levels of transferrin receptor. In vivo studies demonstrate increased Prussian blue staining in hepatosplenic macrophages in MO-OH-Nap-treated mice. These studies demonstrate that MO-OH-Nap-induced cytotoxic effects in MM cells are dependent on the tropolone's ability to alter cellular iron availability and establish new connections between iron homeostasis and the UPR in MM.


Subject(s)
Apoptosis/drug effects , Iron Chelating Agents/pharmacology , Iron/metabolism , Multiple Myeloma/pathology , Receptors, Transferrin/metabolism , Tropolone/pharmacology , Unfolded Protein Response/drug effects , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Chlorides/pharmacology , Deferoxamine/pharmacology , Female , Ferric Compounds/pharmacology , Ferrous Compounds/pharmacology , Humans , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Quaternary Ammonium Compounds/pharmacology , Siderophores/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL