Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Publication year range
1.
Vojnosanit Pregl ; 68(2): 130-5, 2011 Feb.
Article in Serbian | MEDLINE | ID: mdl-21456305

ABSTRACT

BACKGROUND/AIM: Iron is a vital constituent of hemoglobin, myoglobin, and some mitochondrial enzymes; therefore, body iron deficiency may result in reduced aerobic capacity. The aim of this study was to evaluate the effects of daily oral iron supplementation on body iron status, and the maximal oxygen uptake (VO2max) in female athletes with latent iron deficiency, as well as with iron-deficiency anemia. METHODS: A total of 37 female volleyball players were included in the study. Seventeen female athletes had latent iron deficiency, and 20 ones iron deficiency anemia. Both groups were divided into the experimental and the control group. The experimental groups received a daily oral iron supplement (200 mg ferrous sulfate), for a two-month training course. Iron status was determined by serum parameters as follows: red blood cells count, hemoglobin concentration, serum iron and ferritin levels, an unsaturated iron binding capacity, total iron binding capacity and transferrin saturation. VO2max was determined by an indirect test. RESULTS: Statistical difference between the latent iron deficient group versus the iron deficient anemic group was found regarding VO2max (p < 0.001). There were correlations between hemoglobin concentration and VO2max in the latent iron deficient group, as well as in the iron deficient anaemic group (p < 0.05). After two months, there was a significant increase in VO2max in all groups (from 7.0% to 18.2%). Values of VO2max at the end of training period were significantly different (45.98 +/- 1.76 vs 42.40 +/- 1.22 mL/kg/min; p < 0.001) between the experimental and the control group only in female athletes with iron deficiency anemia. After the supplementation, markers of iron status were significantly higher in supplemented groups than in the controls. CONCLUSION: VO2max was significantly lower in the iron deficient anemic group versus the latent iron deficient group. Iron supplementation during a two-month training period significantly improved body iron status in the iron deficient female athletes with or without anemia, and significantly increased VO2max only in the subjects with iron deficiency anemia.


Subject(s)
Anemia, Iron-Deficiency/therapy , Athletes , Dietary Supplements , Ferrous Compounds/therapeutic use , Iron Deficiencies , Oxygen Consumption , Adolescent , Adult , Anemia, Iron-Deficiency/physiopathology , Female , Hemoglobins/analysis , Humans , Volleyball , Young Adult
2.
Res Sports Med ; 16(4): 281-94, 2008.
Article in English | MEDLINE | ID: mdl-19089749

ABSTRACT

The main aim of this investigation was to evaluate the changes in total antioxidant capacity (TAC) and aerobic and anaerobic performance induced by supplementation of coffeeberry (CB) formulation for 4 weeks in college athletes. Twenty college athletes (14 males and 6 females) were allocated to two randomly assigned trials. Subjects in the CB group orally ingested capsules that contained CB formulation at a dose of 800 mg per day in two equal doses for 28 days, while subjects in the placebo (P) group ingested an equal number of identical-looking caps that contained cellulose. There were no changes in glucose, cholesterol, and lipoproteins within or between trials (p > 0.05). Total antioxidant capacity (TAC) was significantly higher in the CB versus P trial at the post- supplementation trial (1.66 +/- 0.16 vs. 1.51 +/- 0.05 mmol/L; p < 0.05). There were no statistically significant changes in average anaerobic power, index of anaerobic fatigue, maximal heart rate, blood lactate, and maximal oxygen uptake within or between trials (p > 0.05). Heart rate recovery (HRR) index increased significantly in CB group as compared with baseline level (38 +/- 4 vs. 32 +/- 5 beats/min; p < 0.05). Blood lactate after 10 min of recovery (Lact(rec)) significantly decreased in the CB group after supplementation protocol as compared with initial results (7.6 +/- 4.2 vs. 5.5 +/- 2.6 mmol/L; p < 0.05). No subject reported any side effects from CB or P. The results of the present study indicate that supplementation with a CB formulation slightly increased antioxidant capacity, but there were minimal effects on recovery parameters after exercise in college athletes.


Subject(s)
Anaerobic Threshold/drug effects , Athletic Performance/physiology , Coffea , Fruit , Oxidative Stress/drug effects , Phytotherapy , Adult , Anaerobic Threshold/physiology , Dietary Supplements , Female , Humans , Male , Oxidative Stress/physiology , Plant Preparations , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL