Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Mol Brain ; 13(1): 27, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32102661

ABSTRACT

Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington's disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer's disease.


Subject(s)
CA1 Region, Hippocampal/pathology , Dendritic Spines/metabolism , Learning , Memory Disorders/complications , Neurons/pathology , RNA Editing , Receptors, AMPA/metabolism , Seizures/complications , Animals , Base Sequence , Body Weight , CA1 Region, Hippocampal/physiopathology , Fear , Long-Term Potentiation , Memory Disorders/physiopathology , Mice , Motor Activity , Neuronal Plasticity , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/physiopathology , Survival Analysis , Synaptic Transmission
2.
Medicines (Basel) ; 5(3)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29966400

ABSTRACT

Chronic neuropathic pain is a prevalent condition that places a heavy burden on individuals and the healthcare system. Current medications have limitations and new approaches are needed, particularly given the current opioid crisis. There is some clinical evidence that the plant Cannabis sativa produces relief from neuropathic pain. However, current meta-analyses suggest that this efficacy is limited and there are problems with side effects. Most of this clinical research has examined whole cannabis, the psychoactive phytocannabinoid 9-tetrahydrocannabinol (THC), and nabiximols, which are a mixture of THC and the non-psychoactive phytocannabinoid cannabidiol. In the past, there has been little evidence based, preclinical animal research to guide clinical studies on phytocannabinoids. Recent animal studies indicate that while THC and high dose nabiximols are effective in animal neuropathic pain models, significant pain relief is only achieved at doses that produce substantial side effects. By contrast, cannabidiol and low dose nabiximols have moderate pain relieving efficacy, but are devoid of cannabinoid-like side effects. This animal data suggests that cannabidiol and low dose nabiximols warrant consideration for clinical studies, at least as adjuvants to current drugs. Preclinical research is also required to identify other phytocannabinoids that have therapeutic potential.

3.
Pain ; 158(12): 2452-2460, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28885457

ABSTRACT

Cannabis and its psychoactive constituent Δ9-tetrahydrocannabinol (THC) have efficacy against neuropathic pain, however, this is hampered by their side effects. It has been suggested that co-administration with another major constituent cannabidiol (CBD) might enhance the analgesic actions of THC and minimise its deleterious side effects. We examined the basis for this phytocannabinoid interaction in a mouse chronic constriction injury (CCI) model of neuropathic pain. Acute systemic administration of THC dose-dependently reduced CCI-induced mechanical and cold allodynia, but also produced motor incoordination, catalepsy, and sedation. Cannabidiol produced a lesser dose-dependent reduction in allodynia, but did not produce the cannabinoid side effects. When co-administered in a fixed ratio, THC and CBD produced a biphasic dose-dependent reduction in allodynia. At low doses, the THC:CBD combination displayed a 200-fold increase in anti-allodynic potency, but had lower efficacy compared with that predicted for an additive drug interaction. By contrast, high THC:CBD doses had lower potency, but greater anti-allodynic efficacy compared with that predicted for an additive interaction. Only the high dose THC:CBD anti-allodynia was associated with cannabinoid side effects and these were similar to those of THC alone. Unlike THC, the low dose THC:CBD anti-allodynia was not cannabinoid receptor mediated. These findings demonstrate that CBD synergistically enhances the pain-relieving actions of THC in an animal neuropathic pain model, but has little impact on the THC-induced side effects. This suggests that low dose THC:CBD combination treatment has potential in the treatment of neuropathic pain.


Subject(s)
Cannabidiol/therapeutic use , Dronabinol/therapeutic use , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Analgesics/therapeutic use , Animals , Cannabis , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mice, Inbred C57BL
5.
Mol Pain ; 3: 24, 2007 Aug 30.
Article in English | MEDLINE | ID: mdl-17727733

ABSTRACT

BACKGROUND: While cannabinoid receptor agonists have analgesic activity in inflammatory pain states they produce a range of side effects. Recently, it has been demonstrated that the arachidonic acid-amino acid conjugate, N-arachidonyl-glycine (NA-glycine) is effective in acute pain models. RESULTS: In the present study we examined the effect of NA-glycine in a rat model of inflammatory pain. Intrathecal administration of NA-glycine (70 - 700 nmol) and the pan-cannabinoid receptor agonist HU-210 (10 nmol) reduced the mechanical allodynia and thermal hyperalgesia induced by intraplantar injection of Freund's complete adjuvant (FCA). The actions of HU-210, but not NA-glycine were reduced by the cannabinoid CB1 receptor antagonist AM251. The cannabinoid CB2 receptor antagonist SR144528 also had no effect on the actions of NA-glycine. In contrast, N-arachidonyl-GABA (NA-GABA, 700 nmol) and N-arachidonyl-alanine (NA-alanine, 700 nmol) had no effect on allodynia and hyperalgesia. HU-210, but not NA-glycine produced a reduction in rotarod latency. CONCLUSION: These findings suggest that NA-glycine may provide a novel non-cannabinoid receptor mediated approach to alleviate inflammatory pain.


Subject(s)
Arachidonic Acids/therapeutic use , Glycine/analogs & derivatives , Inflammation/drug therapy , Pain/drug therapy , Animals , Arachidonic Acids/administration & dosage , Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists , Disease Models, Animal , Glycine/administration & dosage , Glycine/pharmacology , Glycine/therapeutic use , Injections, Spinal , Male , Rats , Rats, Sprague-Dawley , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL