Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34726479

ABSTRACT

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Subject(s)
COVID-19 Drug Treatment , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
2.
J Med Chem ; 58(1): 419-32, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25353650

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) has been genetically linked to Parkinson's disease (PD) by genome-wide association studies (GWAS). The most common LRRK2 mutation, G2019S, which is relatively rare in the total population, gives rise to increased kinase activity. As such, LRRK2 kinase inhibitors are potentially useful in the treatment of PD. We herein disclose the discovery and optimization of a novel series of potent LRRK2 inhibitors, focusing on improving kinome selectivity using a surrogate crystallography approach. This resulted in the identification of 14 (PF-06447475), a highly potent, brain penetrant and selective LRRK2 inhibitor which has been further profiled in in vivo safety and pharmacodynamic studies.


Subject(s)
Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteome/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Amino Acid Sequence , Animals , Area Under Curve , Brain/metabolism , Crystallography, X-Ray , Drug Discovery , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice, Inbred C57BL , Mice, Transgenic , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutation, Missense , Nitriles/chemistry , Nitriles/pharmacokinetics , Parkinson Disease/drug therapy , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Proteome/chemistry , Proteome/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Rats
3.
ACS Chem Neurosci ; 1(6): 435-49, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-22778837

ABSTRACT

The interplay among commonly used physicochemical properties in drug design was examined and utilized to create a prospective design tool focused on the alignment of key druglike attributes. Using a set of six physicochemical parameters ((a) lipophilicity, calculated partition coefficient (ClogP); (b) calculated distribution coefficient at pH = 7.4 (ClogD); (c) molecular weight (MW); (d) topological polar surface area (TPSA); (e) number of hydrogen bond donors (HBD); (f) most basic center (pK(a))), a druglikeness central nervous system multiparameter optimization (CNS MPO) algorithm was built and applied to a set of marketed CNS drugs (N = 119) and Pfizer CNS candidates (N = 108), as well as to a large diversity set of Pfizer proprietary compounds (N = 11 303). The novel CNS MPO algorithm showed that 74% of marketed CNS drugs displayed a high CNS MPO score (MPO desirability score ≥ 4, using a scale of 0-6), in comparison to 60% of the Pfizer CNS candidates. This analysis suggests that this algorithm could potentially be used to identify compounds with a higher probability of successfully testing hypotheses in the clinic. In addition, a relationship between an increasing CNS MPO score and alignment of key in vitro attributes of drug discovery (favorable permeability, P-glycoprotein (P-gp) efflux, metabolic stability, and safety) was seen in the marketed CNS drug set, the Pfizer candidate set, and the Pfizer proprietary diversity set. The CNS MPO scoring function offers advantages over hard cutoffs or utilization of single parameters to optimize structure-activity relationships (SAR) by expanding medicinal chemistry design space through a holistic assessment approach. Based on six physicochemical properties commonly used by medicinal chemists, the CNS MPO function may be used prospectively at the design stage to accelerate the identification of compounds with increased probability of success.


Subject(s)
Central Nervous System Agents/pharmacology , Central Nervous System/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Algorithms , Animals , Cell Line , Cell Survival/drug effects , Central Nervous System/pathology , Central Nervous System Agents/pharmacokinetics , Central Nervous System Agents/toxicity , Cytochrome P-450 Enzyme System/metabolism , Dogs , Drug Design , Drug Discovery , Endpoint Determination , Humans , Hydrogen Bonding , Microsomes, Liver/metabolism , Molecular Weight , Neurons/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL