Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232396

ABSTRACT

The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.


Subject(s)
Chromatin , DNA Replication , Amino Acids/metabolism , Arginine/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly Factor-1/chemistry , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , DNA/metabolism , Humans , Peptides/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Nat Med ; 16(7): 774-80, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20601951

ABSTRACT

Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/enzymology , Candida albicans/pathogenicity , Candidiasis/enzymology , Fungal Proteins/metabolism , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Acetylation , Animals , Candida albicans/drug effects , Candidiasis/genetics , Cell Survival , Drug Delivery Systems , Fungal Proteins/genetics , Histone Acetyltransferases/genetics , Histone Deacetylases/genetics , Mice , Niacinamide/pharmacology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL