Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080248

ABSTRACT

Verbenone and carvone are allylic monoterpenoid ketones with many applications in the fine chemicals industry that can be obtained, respectively, from the allylic oxidation of α-pinene and limonene over a silica-supported iron hexadecachlorinated phthalocyanine (FePcCl16-NH2-SiO2) catalyst and with t-butyl hydroperoxide (TBHP) as oxidant. As there are no reported analyses of the environmental impacts associated with catalytic transformation of terpenes into value-added products that include the steps associated with synthesis of the catalyst and several options of raw materials in the process, this contribution reports the evaluation of the environmental impacts in the conceptual process to produce verbenone and carvone considering two scenarios (SI-raw-oils and SII-purified-oils). The impact categories were evaluated using ReCiPe and IPCC methods implemented in SimaPro 9.3 software. The environmental impacts in the synthesis of the heterogeneous catalyst FePcCl16-NH2-SiO2 showed that the highest burdens in terms of environmental impact come from the use of fossil fuel energy sources and solvents, which primarily affect human health. The most significant environmental impacts associated with carvone and verbenone production are global warming and fine particulate matter formation, with fewer environmental impacts associated with the process that starts directly from turpentine and orange oils (SI-raw-oils) instead of the previously extracted α-pinene and limonene (SII-purified-oils). As TBHP was identified as a hotspot in the production process of verbenone and carvone, it is necessary to choose a more environmentally friendly and energy-efficient oxidizing agent for the oxidation of turpentine and orange oils.


Subject(s)
Silicon Dioxide , Turpentine , Bicyclic Monoterpenes , Cyclohexane Monoterpenes , Humans , Limonene , Plant Oils
2.
Environ Sci Pollut Res Int ; 27(27): 33890-33902, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32537689

ABSTRACT

The search for renewable fuels or components which may improve or replace fossil fuels is an important step towards a sustainable future. In particular, the pine oleoresin produced by conifer trees, which is composed by turpentine oil and non-volatile rosin, may be transformed into alternative fuels. In this work, combustion of six molecules which can be obtained from oleoresin either by distillation (i.e., α- and ß-pinene) or by further oxyfunctionalization (nopol, terpineol, myrtenol, and borneol) was studied to assess the potential of pine oleoresin as raw material for biofuels. Emission indices of the main pollutants (carbon monoxide-CO, unburned hydrocarbons-UHC, and nitrogen oxides-NOx) were obtained in non-premixed co-flow laminar flames of the oleoresin-derived molecules blended with n-heptane. The main characteristics of the flames (i.e., temperature and height) were also determined. Significant increase in flame temperature and reduction in CO and UHC emissions with respect to n-heptane were observed with nopol, terpineol, and myrtenol, along an increase in NOx emissions, suggesting an improvement in combustion performance. In addition, differences in emission indices, evidenced for these molecules (even between α- and ß-pinene), suggest the importance of the molecular structure in the combustion reaction.


Subject(s)
Biofuels/analysis , Plant Extracts , Carbon Monoxide/analysis , Molecular Structure , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL