Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur J Endocrinol ; 150(4): 591-603, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15080791

ABSTRACT

OBJECTIVE: Calcitriol analogues might represent an interesting new therapy for benign prostate hyperplasia (BPH). We here report the preclinical characterization of BXL-628, an analogue selected for an ongoing double-blind, randomized, placebo-controlled phase II trial in BPH. DESIGN: Experiments with BXL-628 were carried out in human BPH cells and in the ventral prostate of intact and castrated rats. METHODS: BPH cell and rat prostate growth were evaluated along with morphological and biochemical hallmarks of apoptosis. RESULTS: BXL-628 inhibited human BPH cell proliferation and induced apoptosis even in the presence of androgens or growth factors. It also decreased prostate growth to an extent similar to finasteride, inducing DNA fragmentation and apoptosis, both in intact and in testosterone-supplemented castrated rats. Accordingly, BXL-628, like finasteride, increased the expression of clusterin, a prostatic atrophy marker. However, BXL-628 did not inhibit 5 alpha-reductase 1 and 2, did not bind to the androgen receptor (AR) in BPH homogenates and did not affect AR-coupled luciferase activity. In addition, BXL-628 did not affect rat pituitary and testis activity or calcemia. CONCLUSIONS: BXL-628 inhibited in vitro and in vivo prostate cell proliferation, and therefore might represent a novel, interesting option for the treatment of BPH.


Subject(s)
Calcitriol/analogs & derivatives , Calcitriol/administration & dosage , Prostate/drug effects , Prostatic Hyperplasia/drug therapy , Animals , Cell Division/drug effects , Clinical Trials, Phase II as Topic , Drug Evaluation, Preclinical , Humans , Male , Orchiectomy , Prostate/pathology , Prostatic Hyperplasia/pathology , Randomized Controlled Trials as Topic , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured/drug effects
2.
Endocrinology ; 144(7): 3046-57, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12810561

ABSTRACT

We have recently found that analog V (BXL-353, a calcitriol analog) inhibits growth factor (GF)-stimulated human benign prostate hyperplasia (BPH) cell proliferation by disrupting signal transduction, reducing Bcl-2 expression, and inducing apoptosis. We now report that BXL-353 blocks in vitro and in vivo testosterone (T) activity. BPH cells responded to T and dihydrotestosterone (DHT) with dose-dependent growth and reduced apoptosis. Exposure of BPH cells to BXL-353 significantly antagonized both T- and DHT-induced proliferation and induced apoptosis, even in the presence of T. To verify whether BXL-353 reduced prostate growth in vivo, we administered it orally to either intact or castrated rats, supplemented with T enanthate. Nonhypercalcemic doses of BXL-353 time- and dose-dependently reduced the androgen effect on ventral prostate weight, similarly to finasteride. Comparable results were obtained after chronic administration of BXL-353 to intact rats. Clusterin (an atrophy marker) gene and protein were up-regulated by BXL-353 in rat prostate, and nuclear fragmentation was widely present. The antiandrogenic properties of BXL-353 did not interfere with pituitary and testis function, as assessed by serum determination of rat LH and T. BXL-353 did not compete for androgen binding to BPH homogenates and failed to inhibit 5alpha-reductase type 1 and type 2 activities. In conclusion, BXL-353 blocks in vitro and in vivo androgen-stimulated prostate cell growth, probably acting downstream from the androgen receptor, without affecting calcemia or sex hormone secretion. BXL-353 and other vitamin D(3) analogs might thus represent an interesting class of compounds for treating patients with BPH.


Subject(s)
Calcitriol/analogs & derivatives , Gonadal Steroid Hormones/pharmacology , Prostate/pathology , Prostatic Hyperplasia/drug therapy , Testosterone/pharmacology , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Aging/pathology , Androgen Antagonists/pharmacology , Animals , Apoptosis/drug effects , Atrophy , CHO Cells , Clusterin , Cricetinae , Dihydrotestosterone/pharmacology , Gene Expression/drug effects , Glycoproteins/genetics , Glycoproteins/metabolism , Gonadal Steroid Hormones/blood , Humans , Luteinizing Hormone/blood , Male , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Prostate/drug effects , Prostatic Hyperplasia/pathology , Rats , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 2 , Receptors, Androgen/genetics , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Stromal Cells/cytology , Stromal Cells/drug effects , Testosterone/blood , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL