Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Physiol Mol Biol Plants ; 21(2): 261-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25964718

ABSTRACT

Bacopa monniera is an important source of metabolites with pharmaceutical value. It has been regarded as a valuable medicinal plant and its entire commercial requirement is met from wild natural population. Recently, metabolic engineering has emerged as an important solution for sustained supply of assured and quality raw material for the production of active principles. Present report describes efficient in vitro multiplication and transformation method for genetic manipulation of this species. MS medium supplemented with 2 mgl(-1) BA and 0.2 mgl(-1) IAA was found optimum for maximum shoot regeneration (98.33 %) from in vitro leaves with 2-3 longitudinal cuts. Agrobacterium tumefaciens-mediated transformation method was used for generating transgenic B. monniera plants. Putative transformants were confirmed by GUS assay and PCR based confirmation of hptII gene. DNA blot analysis showed single copy insertion of transgene cassette. An average of 87.5 % of the regenerated shoots were found PCR positive for hptII gene and GUS activity was detected in leaves of transgenic shoots at a frequency of 82.5 % The efficient multiple shoots regeneration system described herein may help in mass production of B. monniera plant. Also, the high frequency transformation protocol described here can be used for genetic engineering of B. monniera for enhancement of its pharmaceutically important metabolites.

2.
Mol Biol Rep ; 41(7): 4675-88, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24664316

ABSTRACT

Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.


Subject(s)
Bacopa/enzymology , Benzopyrans/metabolism , Gene Expression , Glycosyltransferases/chemistry , Plant Proteins/chemistry , Amino Acid Motifs , Bacopa/classification , Bacopa/drug effects , Bacopa/genetics , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , India , Lycium/chemistry , Lycium/enzymology , Molecular Sequence Data , Phylogeny , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/genetics , Plant Stems/drug effects , Plant Stems/enzymology , Plant Stems/genetics , Plants, Medicinal , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salicylic Acid/pharmacology , Sequence Alignment , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL