Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Biomolecules ; 13(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37509162

ABSTRACT

The aim of this work was to establish the potential of natural deep eutectic solvents (NADES) for the stabilization of aroma volatile organic compounds from a natural source. Satureja montana was used as a source of volatile components, as it is rich in terpenes of great commercial and biological importance, such as carvacrol, thymol, and thymoquinone, among others. Supercritical CO2 was used to extract the lipophilic fraction of S. montana, which was further directly dispersed in NADES. The stabilizing capacity of seven different NADES based on betaine and glycerol was analyzed. The stability of the components in NADES was monitored by analyzing the headspace profile during 6 months of storage at room temperature. The changes in the headspace profile over time were analyzed by using different statistical and chemometric tools and the Wilcoxon matched pair test. It was determined that alterations over time occurred such as degradation and oxidation, and they were the most prominent in the control. In addition, the indicator of decreased stability of the control was the formation of the new compounds that could compromise the quality of the product. In the stabilized NADES samples, the changes were significantly less prominent, indicating that the NADES had a stabilizing effect on the volatile compounds. According to Wilcoxon matched pair test, the most efficient stability was achieved by using betaine/ethylene glycol, glycerol/glucose, and betaine/sorbitol/water. Therefore, by applying two green solvents, a sustainable approach for obtaining pure and high-quality S. montana extracts with extended stability at room temperature was established.


Subject(s)
Glycerol , Satureja , Solvents , Deep Eutectic Solvents , Carbon Dioxide , Betaine , Odorants , Montana , Plant Extracts
2.
Antibiotics (Basel) ; 12(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37370350

ABSTRACT

A green and sustainable procedure for obtaining Lavandula stoechas extracts with antioxidant and antimicrobial properties was investigated. Green solvents, supercritical CO2, and natural deep eutectic solvents (NADES) together with ultrasound-assisted extraction were used for the sequential extraction of terpene and polyphenols fractions. After the CO2 extraction of the terpene fraction, the residue material was used in an extraction with different NADES (betaine-ethylene glycol (Bet:EG), betaine-glycerol (Bet:Gly), and glycerol-glucose (Gly:Glu)), intensified with an ultrasound-assisted method (at 30 and 60 °C). In the CO2 extract, the major group of components belonged to oxygenated monoterpenes, while the highest polyphenol content with the dominant rutin (438.93 ± 4.60 µg/mL) was determined in Bet:EG extracts (60 °C). Bet:EG extracts also exhibited the most potent antioxidant activity according to DPPH, ABTS, and FRAP assays. Moreover, Bet:EG extracts showed significant inhibitory activity against Gram-positive and Gram-negative bacteria, with minimum inhibitory activity of 0.781-3.125 and 1.563-6.250 mg·mL-1, respectively. By comparing the polyphenolic content and antioxidant and antimicrobial activities of Bet:EG extracts with extracts obtained with conventional solvents (water and ethanol), the superiority of NADES was determined. The established environmentally friendly procedure unifies the requirements of green and sustainable development and modern pharmacognosy because it combines the use of safe alternative solvents, the absence of solvent waste generation, more rational use of resources, and the attainment of safe and quality extracts.

3.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745004

ABSTRACT

High-pressure pre-treatment followed by supercritical carbon dioxide (ScCO2) extraction (300 bar, 40 °C) was applied for the attainment of the lipophilic fraction of microalga Tetradesmus obliquus. The chemical profile of supercritical extracts of T. obliquus was analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionization (UHPLC-ESI-HRMS). Moreover, the impact of ScCO2 on the microbiological and metal profile of the biomass was monitored. The application of the pre-treatment increased the extraction yield approximately three-fold compared to the control. In the obtained extracts (control and pre-treated extracts), the identified components belonged to triacylglyceroles, fatty acid derivatives, diacylglycerophosphocholines and diacylglycerophosphoserines, pigments, terpenes, and steroids. Triacylglycerols (65%) were the most dominant group of compounds in the control extract. The pre-treatment decreased the percentage of triacylglycerols to 2%, while the abundance of fatty acid derivatives was significantly increased (82%). In addition, the pre-treatment led to an increase in the percentages of carotenoids, terpenoids, and steroids. Furthermore, it was determined that ScCO2 extraction reduced the number of microorganisms in the biomass. Considering its microbiological and metal profiles, the biomass after ScCO2 can potentially be used as a safe and important source of organic compounds.


Subject(s)
Chlorophyceae , Chromatography, Supercritical Fluid , Microalgae , Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid/methods , Fatty Acids , Plant Extracts/pharmacology , Triglycerides
4.
Chem Biodivers ; 19(3): e202100954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35170197

ABSTRACT

The most abundant volatile compounds of sweet wormwood (Artemisia annua L.) essential oil were artemisia ketone (25.4 %) and trans-caryophyllene (10.2 %), followed by 1,8-cineole, camphor, germacrene D and ß-selinene. The major volatile compounds in the hydrosol were camphor (25.1 %), 1,8-cineole (20.5 %) and artemisia ketone (10.7 %), followed by trans-pinocarveol and yomogi alcohol. Tested essential oil was rich in oxygenated monoterpenes and sesquiterpene hydrocarbons, while the former were identified as the major class of volatile compounds in the hydrosol, due to higher water solubility. Classification of all sweet wormwood chemotypes, according to essential oil composition, in available literature (17 studies and 61 accessions) could be done according to four chemotypes: artemisia ketone+artemisia alcohol (most abundant), artemisia ketone, camphor and nonspecific chemotype. According to this classification, essential oil of sweet wormwood from this study belongs to artemisia ketone (content varied between 22.1 and 55.8 %). Bearing in mind that hydrosols are a by-product of industrial production of essential oils, and the fact that sweet wormwood hydrosol has high contents of camphor, 1,8-cineole and artemisia ketone, there is a great potential for the use of this aromatic plant primary processing waste product as a water replacement in cosmetic industry, beverages flavoring, for food preservation, as well as in post-harvest pre-storage treatments in organic agriculture.


Subject(s)
Artemisia annua , Artemisia , Oils, Volatile , Camphor , Eucalyptol , Serbia
5.
Molecules ; 26(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299637

ABSTRACT

This study intends to valorize by-products of the industrial processing of tobacco to obtain nicotine and phenolics as value-added compounds. Three influential parameters of the microwave-assisted extraction-MAE (temperature, treatment time, and solvent/solid ratio) were studied for the optimization of the extraction protocol for tobacco leaves and three types of waste-scrap, dust, and midrib, respectively. Nicotine was the dominant bioactive compound in all extracts, ranging from 1.512 to 5.480% in leaves, 1.886 to 3.709% in scrap, 2.628 to 4.840% dust, and 0.867 to 1.783% in midrib extracts. Five phenolic compounds were identified and quantified, predominated by chlorogenic acid and rutin. Additionally, total phenol content and antioxidant activity were determined using spectrophotometric assays. Optimization was performed in two aspects: to obtain a maximum extraction yield with minimum nicotine content and to obtain a maximum extraction yield with maximum nicotine content. These findings demonstrate that tobacco waste is a valuable source of bioactive compounds and MAE can be a promising alternative technique to obtain extracts rich in targeted bioactive compounds, especially nicotine.


Subject(s)
Antioxidants , Nicotiana/chemistry , Nicotine , Phenols , Plant Extracts/chemistry , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid , Hot Temperature , Microwaves , Nicotine/chemistry , Nicotine/isolation & purification , Phenols/chemistry , Phenols/isolation & purification , Solid Waste
6.
Chem Biodivers ; 18(4): e2100058, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33660411

ABSTRACT

The aim of this study was to extract Allium ursinum L. for the first time by supercritical carbon dioxide (SC-CO2 ) as green sustainable method. The impact of temperature in the range from 40 to 60 °C and pressure between 150 and 400 bar on the quality of the obtained extracts and efficiency of the extraction was investigated. The highest extraction yield (3.43 %) was achieved by applying the extraction conditions of 400 bar and 60 °C. The analysis of the extracts was performed by gas chromatography and mass spectrometry (GC/MS). The most dominant sulfur-containing constituent of the extracts was allyl methyl trisulfide with the highest abundance at 350 bar and 50 °C. In addition, the presence of other pharmacologically potent sulfur compounds was recorded including S-methyl methanethiosulfinate, diallyl trisulfide, S-methyl methylthiosulfonate, and dimethyl trisulfide. Multivariate data analysis tool was utilized to investigate distributions of the identified compounds among the extracts obtained under various extraction conditions and yields. It was determined that the SC-CO2 extraction can by efficiently used for A. ursinum.


Subject(s)
Allium/chemistry , Carbon Dioxide/chemistry , Plant Extracts/isolation & purification , Sulfur Compounds/isolation & purification , Temperature , Gas Chromatography-Mass Spectrometry , Multivariate Analysis , Plant Extracts/chemistry , Pressure , Sulfur Compounds/chemistry
7.
Plants (Basel) ; 9(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182763

ABSTRACT

Satureja montana herbal species belongs to aromatic medicinal plants with a significant place in traditional medicine. However, products produced with conventional procedures do not meet the requirements of the modern market which include environmentally-safe processes that provide quality, safe, and standardized products. In this study, the antiproliferative activity of S. montana extracts obtained by supercritical carbon dioxide and solid-liquid extraction followed by spray drying was investigated using the in vivo model of Ehrlich ascites carcinoma (EAC) in mice. The impact of two concentrations of extracts on the growth of tumor and the redox status of malignant cells was monitored. It was determined that the extracts induced oxidative stress in the malignant cells which was confirmed by the changes in activity of biochemical indicators of oxidative stress. The posttreatment was not an efficient approach, while the extracts applied as pretreatment and treatment resulted in an increase in the xanthine oxidase (XOD) activity, a decrease in catalase (CAT) activity, and an increase in the intensity of lipid peroxidation (LPx). Furthermore, a decrease in the values of reduced glutathione (GSH) and an increase in glutathione reductase (GR) and glutathione peroxidase (GSHPx) in EAC cells were recorded.

8.
Plant Foods Hum Nutr ; 75(4): 553-560, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32816146

ABSTRACT

Two environmentally friendly innovative extraction techniques - subcritical water (SWE) and microwave-assisted extraction (MAE) were applied for the extraction of phenolics from pomegranate peel. The impact of process conditions (SWE: temperature 100-220 °C, extraction time 5-30 min; MAE: solvent water and 50% ethanol, irradiation power 470 and 800 W) on the quality of extracts in terms of the content of total phenolics, total flavonoids, major phenolic constituents (gallic acid, ellagic acid, punicalin, punicalagin), as well as 5-hydroxymethylfurfural(HMF) amount was investigated. For SWE, temperature of 130 °C and 20 min extraction time were found optimal for obtaining high content of bioactive compounds and minimizing the yield of HMF. During MAE, phenolic compounds were effectively extracted by using lower microwave power and 50% ethanol. Comparing two techniques, MAE is more efficient than SWE for the extraction of phenolics from pomegranate peel while obtaining a HMF-free extracts.


Subject(s)
Microwaves , Water , Furaldehyde/analogs & derivatives , Plant Extracts , Pomegranate
9.
Molecules ; 25(8)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325741

ABSTRACT

In the present study, valorization of yarrow (Achillea millefolium) by-product from the filter tea industry was investigated through the application of subcritical water for the extraction of bioactive compounds. The influence of different process parameters (temperature 120-200 °C, extraction time 10-30 min, and HCl concentration in extraction solvent 0-1.5%) on extract quality in terms of content of bioactive compounds and antioxidant activity was investigated. Optimal conditions of the extraction process (temperature 198 °C, extraction time 16.5 min, and without acidifer) were determined and, when applied, the most efficient exploitation of by-products is achieved, that is, attainment of extracts rich in total phenols and flavonoids and high antioxidant activity. In addition, by applying the high performance liquid chromatographic analysis, the content of chlorogenic acid was determined as well as the hydroxymethylfurfural content in obtained extracts. The results demonstrated that subcritical water can be successfully used for utilization of yarrow by-products for obtaining extracts rich in antioxidants.


Subject(s)
Achillea/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Analysis of Variance , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Liquid-Liquid Extraction , Phenols/chemistry , Plant Extracts/isolation & purification
10.
Pharmaceutics ; 11(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614551

ABSTRACT

White horehound (Marrubium vulgare L.), is a grey-leaved perennial herb, belonging to Lamiaceae family, distributed in Eurasia and northern Africa. Despite the fact that M. vulgare has been used since ancient times in treating diverse diseases, it is only in the last decade or so that scientists have been able to lay the foundation for its potential pharmacological actions from the results observed through the prism of ethnopharmacological use of this species. The novelty of this study was that subcritical water extraction, acknowledged as a powerful extraction technology to recover phenolic compounds, was coupled with spray drying. The subcritical horehound extract, obtained using optimal process parameters, was used as a liquid feed in spray drying. Maltodextrin was used as a carrier in a concentration of 10%. Thus, two M. vulgare powders, carrier-free and 10% MD, were produced. Comprehensive powders characterization was conducted in order to evaluate their quality. Results confirmed that spray drying can be used as a method of choice for obtaining high quality horehound powders which kept the amorphous structure constant after 6 months.

11.
J Sci Food Agric ; 96(13): 4613-22, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26916516

ABSTRACT

BACKGROUND: Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. RESULTS: The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. CONCLUSION: RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry.


Subject(s)
Antioxidants/isolation & purification , Coriandrum/chemistry , Food Irradiation , Models, Chemical , Phenols/isolation & purification , Plant Extracts/isolation & purification , Seeds/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Coriandrum/radiation effects , Dietary Supplements/analysis , Ethanol/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/isolation & purification , Kinetics , Microwaves , Phenols/analysis , Phenols/chemistry , Plant Extracts/chemistry , Seeds/radiation effects , Serbia , Solvents/chemistry , Statistics as Topic
12.
Ultrason Sonochem ; 29: 502-11, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26563916

ABSTRACT

Ultrasound-assisted extraction was used for extraction of bioactive compounds and for production of Allium ursinum liquid extract. The experiments were carried out according to tree level, four variables, face-centered cubic experimental design (FDC) combined with response surface methodology (RSM). Temperature (from 40 to 80 °C), ethanol concentration (from 30% to 70%), extraction time (from 40 to 80 min) and ultrasonic power (from 19.2 to 38.4 W/L) were investigated as independent variables in order to obtain the optimal conditions for extraction and to maximize the yield of total phenols (TP), flavonoids (TF) and antioxidant activity of obtained extracts. Experimental results were fitted to the second order polynomial model where multiple regression and analysis of variance were used to determine the fitness of the model and optimal condition for investigated responses. The predicted values of the TP (1.60 g GAE/100 g DW), TF (0.35 g CE/100 g DW), antioxidant activity, IC50 (0.71 mg/ml) and EY (38.1%) were determined at the optimal conditions for ultrasound assisted extraction: 80 °C temperature, 70% ethanol, 79.8 min and 20.06 W/L ultrasonic power. The predicted results matched well with the experimental results obtained using optimal extraction conditions which validated the RSM model with a good correlation.


Subject(s)
Antioxidants/isolation & purification , Chemical Fractionation/methods , Garlic/chemistry , Ultrasonic Waves , Antioxidants/pharmacology , Flavonoids/isolation & purification , Flavonoids/pharmacology , Phenols/isolation & purification , Phenols/pharmacology , Solvents/chemistry , Temperature
13.
Molecules ; 19(1): 767-82, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24413832

ABSTRACT

The present study aimed to evaluate acetylcholinesterase (AChE) inhibitory and antioxidant activities of Lamiaceae medicinal plants growing wild in Croatia. Using Ellman's colorimetric assay all tested ethanolic extracts and their hydroxycinnamic acid constituents demonstrated in vitro AChE inhibitory properties in a dose dependent manner. The extracts of Mentha x piperita, M. longifolia, Salvia officinalis, Satureja montana, Teucrium arduini, T. chamaedrys, T. montanum, T. polium and Thymus vulgaris at 1 mg/mL showed strong inhibitory activity against AChE. The antioxidant potential of the investigated Lamiaceae species was assessed by DPPH• scavenging activity and total antioxidant capacity assays, in comparison with hydroxycinnamic acids and trolox. The extracts differed greatly in their total hydroxycinnamic derivatives content, determined spectrophotometrically. Rosmarinic acid was found to be the predominant constituent in most of the investigated medicinal plants (by RP-HPLC) and had a substantial influence on their AChE inhibitory and antioxidant properties, with the exception of Teucrium species. These findings indicate that Lamiaceae species are a rich source of various natural AChE inhibitors and antioxidants that could be useful in the prevention and treatment of Alzheimer's and other related diseases.


Subject(s)
Cholinesterase Inhibitors/chemistry , Free Radical Scavengers/chemistry , Lamiaceae/chemistry , Plant Extracts/chemistry , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Animals , Biphenyl Compounds/chemistry , Cholinesterase Inhibitors/isolation & purification , Chromans , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Cinnamates/chemistry , Cinnamates/isolation & purification , Coumaric Acids/chemistry , Depsides/chemistry , Depsides/isolation & purification , Drug Discovery , Eels , Fish Proteins/chemistry , Free Radical Scavengers/isolation & purification , Free Radicals/chemistry , Humans , Picrates/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal/chemistry , Rosmarinic Acid
14.
Molecules ; 17(3): 2518-28, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22388965

ABSTRACT

A simple and rapid HPLC method for determination of chlorogenic acid (5-O-caffeoylquinic acid) in mate tea extracts was developed and validated. The chromatography used isocratic elution with a mobile phase of aqueous 1.5% acetic acid-methanol (85:15, v/v). The flow rate was 0.8 mL/min and detection by UV at 325 nm. The method showed good selectivity, accuracy, repeatability and robustness, with detection limit of 0.26 mg/L and recovery of 97.76%. The developed method was applied for the determination of chlorogenic acid in mate tea extracts obtained by ethanol extraction and liquid carbon dioxide extraction with ethanol as co-solvent. Different ethanol concentrations were used (40, 50 and 60%, v/v) and liquid CO2 extraction was performed at different pressures (50 and 100 bar) and constant temperature (27 ± 1 °C). Significant influence of extraction methods, conditions and solvent polarity on chlorogenic acid content, antioxidant activity and total phenolic and flavonoid content of mate tea extracts was established. The most efficient extraction solvent was liquid CO2 with aqueous ethanol (40%) as co-solvent using an extraction pressure of 100 bar.


Subject(s)
Free Radical Scavengers/isolation & purification , Ilex paraguariensis/chemistry , Phenols/isolation & purification , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Solid Phase Extraction/methods , Chlorogenic Acid/chemistry , Chlorogenic Acid/isolation & purification , Chromatography, High Pressure Liquid , Chromatography, Supercritical Fluid , Ethanol/chemistry , Flavonoids/chemistry , Flavonoids/isolation & purification , Free Radical Scavengers/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL