Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Environ Res ; 214(Pt 2): 113925, 2022 11.
Article in English | MEDLINE | ID: mdl-35868583

ABSTRACT

The pollution of organic dyes such as malachite green is one of the globally critical issues, calling for efficient mitigation methods. Herein, we developed green Mn3O4 nanoparticles synthesized using natural compounds extracted from Costus woodsonii flowers under an ultrasound-assisted mode. The materials were characterized using several physicochemical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, Energy-dispersive X-ray spectroscopy, scanning electron microscopy, Raman spectroscopy, and N2 adsorption desorption isotherm measurement. The X-ray diffraction and N2 isotherm plots confirmed the presence of tetragonal γ-Mn3O4 phase and mesoporous structure, respectively. Carbonyl groups derived from flavonoids or carboxylic compounds were found in the surface of green Mn3O4 nanoparticles. The effect of pH, contact time, dose, and concentration on the adsorption of malachite green over green Mn3O4 was carried out. The maximum malachite green adsorption capacity for green Mn3O4 nanoparticles was 101-162 mg g-1. Moreover, kinetic and isotherm adsorption of malachite green obeyed Langmuir (Radj.2 = 0.980-0.995) and pseudo first-order models (Radj.2 = 0.996-1.00), respectively. Adsorption of malachite green over green Mn3O4 was a thermodynamically spontaneous process due to negative Gibbs free energy values (ΔGο < 0). Green Mn3O4 nanoparticles offered a high stability through the FR-IR spectra analysis. With a good recyclability of 4 cycles, green Mn3O4 nanoparticles can be used as potential adsorbent for removing malachite green dye from water.


Subject(s)
Costus , Nanoparticles , Water Pollutants, Chemical , Adsorption , Flowers/chemistry , Hydrogen-Ion Concentration , Kinetics , Rosaniline Dyes , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 306: 135527, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780994

ABSTRACT

Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.


Subject(s)
Ammonium Compounds , Water Purification , Membranes, Artificial , Osmosis , Phosphorus , Sodium Chloride , Wastewater , Water Purification/methods
3.
Environ Res ; 209: 112831, 2022 06.
Article in English | MEDLINE | ID: mdl-35123962

ABSTRACT

The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Microbial Sensitivity Tests , Plant Extracts , Zinc Oxide/pharmacology
4.
Chemosphere ; 295: 133795, 2022 May.
Article in English | MEDLINE | ID: mdl-35124083

ABSTRACT

Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their potential carcinogenic effect on humans. It showed a characteristic efficiency towards the adsorptive removal of these compounds over a long period, i.e., eight continuous weeks, at ambient temperature and atmospheric pressure. After 8-weeks, the adsorbed amounts of these compounds were determined as: 325.3 mg C7H7Cl, 247.6 mg CHCl3 and 253.3 mg CCl4 per g of γ-Al2O3, respectively. CCl4 was also found to be dissociatively adsorbed on the surface of γ-Al2O3, whereas CHCl3 and C7H7Cl were found to be associatively adsorbed. The prepared γ-Al2O3 has a relatively high surface area (i.e., 192.2 m2. g-1) and mesoporosity with different pore diameters in the range of 25-47 Å. Furthermore, environmental impacts of the nanocomposite γ-Al2O3 preparation were evaluated using life cycle assessment. For prepartion of adsorbent utilising 1 kg of scrap aluminium wire, it was observed that potential energy demand was 288 MJ, climate change potential was 19 kg CO2 equivalent, acidification potential was 0.115 kg SO2 equivalent and eutrophication potential was 0.018 kg PO43- equivalent.


Subject(s)
Environmental Pollutants , Volatile Organic Compounds , Adsorption , Aluminum , Aluminum Oxide , Animals , Feathers , Humans , Life Cycle Stages
5.
Chemosphere ; 280: 130723, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34162084

ABSTRACT

The automotive industry is directly affected by the shortage of fossil fuels and the excessive pollution resulting from crude oil-based fuels has many adverse effects on the environment. The search for a greener and sustainable source of materials and fuels to power automobiles has ultimately led to the usage of biomass and biobased sources as the main precursor due to its graft availability and renewability. Biobased fuels developed have been shown to easily blend in with the existing automobile engines and to provide sustainable performance. Similarly, the usage of various biobased polymers, plastics, and composite materials as the structural materials for the construction of automobiles instead of crude oil sources have shown to be invaluable. The powering of automobiles with electricity is the future of the transportation industry to address the greenhouse gas emissions caused by fossil fuels. Hence, biobased lithium-ion batteries and supercapacitors have started to enter the mid-sized automotive industry. However, extensive commercialization of biobased products application in the automotive sector is underdeveloped. Hence it is customary to assess the various drawbacks of using biobased materials and identify the correct pathway for new research and development in this field. Therefore, this review covers various applications of biobased products in the automotive industries and mentions the active researches going on in this field to replace petroleum and crude oil-based sources with biobased sources.


Subject(s)
Fossil Fuels , Petroleum , Automobiles , Biomass , Plastics
6.
Bioresour Technol ; 335: 125292, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34029868

ABSTRACT

A novel genetic algorithm-based feature selection approach is incorporated and based on these features, four different ML methods were investigated. According to the findings, ML models could reliably predict bio-oil yield. The results showed that Random forest (RF) is preferred for bio-oil yield prediction (R2 ~ 0.98) and highly recommended when dealing with the complex correlation between variables and target. Multi-Linear regression model showed relatively poor generalization performance (R2 ~ 0.75). The partial dependence analysis was done for ML models to show the influence of each input variable on the target variable. Lastly, an easy-to-use software package was developed based on the RF model for the prediction of bio-oil yield. The current study offered new insights into the pyrolysis process of biomass and to improve bio-oil yield. It is an attempt to reduce the time-consuming and expensive experimental work for estimating the bio-oil yield of biomass during pyrolysis.


Subject(s)
Plant Oils , Pyrolysis , Biofuels , Biomass , Hot Temperature , Machine Learning , Polyphenols
7.
Chemosphere ; 274: 129734, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33548641

ABSTRACT

A lot of studies on spinel ferrites (MFe2O4, M = divalent metal ion) and their binary nanocomposites as photocatalysts in the decontamination of wastewater have been performed, because MFe2O4 nanoparticles are relatively stable, biocompatible and low-cost efficient photocatalyst. The separation of MFe2O4 photocatalyst is easy owing to its excellent magnetic behavior. With this background, the recent developments on photocatalytic performances of MFe2O4 based binary nanocomposites were comprehensively reviewed. Especially, a focus on MFe2O4/metal oxides, MFe2O4/carbon based materials, MFe2O4/polymers, MFe2O4/metal nanoparticles and MFe2O4/other compounds for the photocatalytic degradation of dyes, emerging contaminants and inorganic pollutants has been thoroughly given. The advantages of MFe2O4 based nanocomposites as photocatalysts were also discussed. In addition, the possible pathway of active free radical generation by these photocatalysts under visible and ultraviolet irradiation has been explained. A comparison of photocatalytic activities of MFe2O4 based binary nanocomposites with recent reports has been carried out. This review concludes that MFe2O4 based binary nanocomposites have potential capacity in water purification technology. Nevertheless, their practical utilization in water treatment plants still needs to be further studied.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Water Purification , Aluminum Oxide , Catalysis , Ferric Compounds , Magnesium Oxide
8.
J Hazard Mater ; 404(Pt A): 124146, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33053473

ABSTRACT

The occurrence and influence of dyes-containing effluents are alarmingly serious; hence, the treatment of such wastewater needs to be undertaken. Here, we report the biosynthesis strategy and utilisation of MgO nanoparticles (MgO NPs) from distinct Tecoma stans (L.) plant extracts (flower, bark, and leaf). The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. For adsorption experiments, the impact of pH, contact time, concentration, and pH on uptake efficiency of congo red (CR) and crystal violet (CV) dyes were investigated and then optimized using response surface methodology and Box-Behnken design. Under the optimal conditions, 99.7% CR (at Ci = 9.33 mg/L, Dos = 0.22, pH = 7.9) and 90.8% CV (at Ci = 5.0 mg/L, Dos = 0.3, pH = 6.3) were attained. The maximum adsorption capacities were calculated from 89.24 to 150.49 mg/g, where MgO NPs derived from flower extract gave better adsorption efficiency than those from other extracts. Therefore, MgO NPs material from Tecoma stans (L.) flower extract is expected as a perspective adsorbent for the effective remediation of organic dyes.


Subject(s)
Bignoniaceae , Nanoparticles , Water Pollutants, Chemical , Adsorption , Coloring Agents , Flowers , Kinetics , Magnesium Oxide , Plant Bark , Plant Extracts , Plant Leaves , Spectroscopy, Fourier Transform Infrared
9.
Chemosphere ; 261: 128159, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113664

ABSTRACT

The degradation and removal of antiviral drugs in water has emerged remains a major challenge. This work presents, the photodegradation of nevirapine (NVP) with a novel p-n heterostructure of FL-BP@Nb2O5 nanoparticles synthesized via hydrothermal method. Several characterization techniques revealed a successful formation of the heterostructure with well aligned band positions that promoted excellent separation of charge carriers. A systematic study was conducted on the effect of initial pH, initial catalyst loading and initial concentration on the degradation kinetics of NVP. Degradation efficiency of 68% was achieved with the FL-BP@Nb2O5 after 3 h with 5 ppm initial concentration solution of NVP, at a working pH of 3 and 15 mg of photocatalyst. The stable fragment resulting from the degradation of NVP was n-butanol as evidenced by LC/MS. The successful degradation of NVP transpired with synergistic effect exhibited by the heterostructure that led to accelerated formation of reactive species that were responsible for the breaking down of NVP into smaller fragments. A TOC removal percentage of 19.03% after the photodegradation of NVP was observed, suggesting a successful break down of NVP to simpler non-toxic carbon-containing compounds.


Subject(s)
Nanostructures/chemistry , Nevirapine/chemistry , 1-Butanol/chemistry , Catalysis , Niobium/chemistry , Oxides/chemistry , Phosphorus/chemistry , Photolysis , Water Pollutants, Chemical/chemistry
10.
Environ Res ; 185: 109452, 2020 06.
Article in English | MEDLINE | ID: mdl-32259725

ABSTRACT

A synergistic effect of the activated limestone-based catalyst (LBC) and microwave irradiation on the transesterification of waste cooking oil (WCO) was screened using a two-level factorial design and response surface methodology. The catalyst was prepared using a wet-impregnation method and was characterised for its surface element, surface morphology, surface area and porosity. The reaction was performed in a purpose-built continuous microwave assisted reactor (CMAR), while the conversion and yield of biodiesel were measured using a gas chromatography. The results showed that the catalyst loading, methanol to oil molar ratio and the reaction time significantly affect the WCO conversion. The optimum conversion of oil to biodiesel up to 96.65% was achieved at catalyst loading of 5.47 wt%, methanol to oil molar ratio of 12.21:1 and the reaction time of 55.26 min. The application of CMAR in this work reduced the transesterification time by about 77% compared to the reaction time needed for a conventional reactor. The biodiesel produced in this work met the specification of American Society for Testing and Materials (ASTM D6751). Engine test results shows the biodiesel has a lower NOx and particulate matters emissions compared to petrodiesel.


Subject(s)
Biofuels , Microwaves , Biofuels/analysis , Catalysis , Cooking , Esterification , Plant Oils
SELECTION OF CITATIONS
SEARCH DETAIL