Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(21): 11584-11588, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393623

ABSTRACT

The origin of extant amphibians remains largely obscure, with only a few early Mesozoic stem taxa known, as opposed to a much better fossil record from the mid-Jurassic on. In recent time, anurans have been traced back to Early Triassic forms and caecilians have been traced back to the Late Jurassic Eocaecilia, both of which exemplify the stepwise acquisition of apomorphies. Yet the most ancient stem-salamanders, known from mid-Jurassic rocks, shed little light on the origin of the clade. The gap between salamanders and other lissamphibians, as well as Paleozoic tetrapods, remains considerable. Here we report a new specimen of Triassurus sixtelae, a hitherto enigmatic tetrapod from the Middle/Late Triassic of Kyrgyzstan, which we identify as the geologically oldest stem-group salamander. This sheds light not only on the early evolution of the salamander body plan, but also on the origin of the group as a whole. The new, second specimen is derived from the same beds as the holotype, the Madygen Formation of southwestern Kyrgyzstan. It reveals a range of salamander characters in this taxon, pushing back the rock record of urodeles by at least 60 to 74 Ma (Carnian-Bathonian). In addition, this stem-salamander shares plesiomorphic characters with temnospondyls, especially branchiosaurids and amphibamiforms.


Subject(s)
Biological Evolution , Urodela , Animals , Fossils , History, Ancient , Kyrgyzstan , Phylogeny , Urodela/anatomy & histology , Urodela/classification
2.
Naturwissenschaften ; 96(1): 81-6, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18836696

ABSTRACT

Of the recent sauropsid skin appendage types, only feathers develop from a cylindrical epidermal invagination, the follicle, and show hierarchical branching. Fossilized integuments of Mesozoic diapsids have been interpreted as follicular and potential feather homologues, an idea particularly controversially discussed for the elongate dorsal skin projections of the small diapsid Longisquama insignis from the Triassic of Kyrgyzstan. Based on new finds and their comparison with the type material, we show that Longisquama's appendages consist of a single-branched internal frame enclosed by a flexible outer membrane. Not supporting a categorization either as feathers or as scales, our analysis demonstrates that the Longisquama appendages formed in a two-stage, feather-like developmental process, representing an unusual early example for the evolutionary plasticity of sauropsid integument.


Subject(s)
Feathers/growth & development , Fossils , Skin Physiological Phenomena , Animals , Feathers/anatomy & histology , Germany , History, Ancient
SELECTION OF CITATIONS
SEARCH DETAIL