Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 110(12): 2595-2611, 2022 12.
Article in English | MEDLINE | ID: mdl-35727166

ABSTRACT

Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the world. OA is often associated with the loss of viscoelastic and tribological properties of synovial fluid (SF) due to degradation of hyaluronic acid (HA) by reactive oxygen species (ROS) and hyaluronidases. Viscosupplementation is one of the ways how to effectively restore SF functions. However, current viscosupplementation products provide only temporal therapeutic effect because of short biological half-life. In this article we describe a novel device for viscosupplementation (NV) based on the cross-linked tyramine derivative of HA, chondroitin sulfate (CS), and high molecular weight HA by online determination of viscoelastic properties loss during degradation by ROS and hyaluronidase. Rheological and tribological properties of developed viscosupplement were compared with HA solutions with different molecular weights in the range 500-2000 kDa, which are currently commonly used as medical devices for viscosupplementation treatment. Moreover, based on clinical practice and scientific literature all samples were also diluted by model OA SF in the ratio 1:1 (vol/vol) to better predict final properties after injection to the joint. The observed results confirmed that NV exhibits appropriate rheological properties (viscosity, elastic, and viscous moduli) comparable with healthy SF and maintain them during degradation for a significantly longer time than HA solutions with molecular weight in the range 500-2000 kDa and cross-linked material without CS.


Subject(s)
Osteoarthritis, Knee , Osteoarthritis , Viscosupplementation , Chondroitin Sulfates/pharmacology , Humans , Hyaluronic Acid/pharmacology , Hyaluronoglucosaminidase/therapeutic use , Injections, Intra-Articular , Osteoarthritis/drug therapy , Reactive Oxygen Species , Tyramine/therapeutic use , Viscosupplementation/methods , Viscosupplements/therapeutic use
2.
Proc Inst Mech Eng H ; 228(2): 149-58, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24398447

ABSTRACT

The aim of this study is to consider the relevance of in situ measurements of bovine serum film thickness in the optical test device that could be related to the function of the artificial hip joint. It is mainly focussed on the effect of the hydrophobicity or hydrophilicity of the transparent surface and the effect of its geometry. Film thickness measurements were performed using ball-on-disc and lens-on-disc configurations of optical test device as a function of time. Chromatic interferograms were recorded with a high-speed complementary metal-oxide semiconductor digital camera and evaluated with thin film colorimetric interferometry. It was clarified that a chromium layer covering the glass disc has a hydrophobic behaviour which supports the adsorption of proteins contained in the bovine serum solution, thereby a thicker lubricating film is formed. On the contrary, the protein film formation was not observed when the disc was covered with a silica layer having a hydrophilic behaviour. In this case, a very thin lubricating film was formed only due to the hydrodynamic effect. Metal and ceramic balls have no substantial effect on lubricant film formation although their contact surfaces have relatively different wettability. It was confirmed that conformity of contacting surfaces and kinematic conditions has fundamental effect on bovine serum film formation. In the ball-on-disc configuration, the lubricant film is formed predominantly due to protein aggregations, which pass through the contact zone and increase the film thickness. In the more conformal ball-on-lens configuration, the lubricant film is formed predominantly due to hydrodynamic effect, thereby the film thickness is kept constant during measurement.


Subject(s)
Hip Prosthesis , Interferometry/methods , Lubricants/chemistry , Materials Testing/methods , Serum/chemistry , Adsorption , Animals , Biomechanical Phenomena , Cattle , Hydrophobic and Hydrophilic Interactions , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL