Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131329, 2024 May.
Article in English | MEDLINE | ID: mdl-38574906

ABSTRACT

The bacterial nanocellulose (BnC) membranes were produced extracellularly by a novel aerobic acetic acid bacterium Komagataeibacter melomenusus. The BnC was modified in situ by adding carboxymethyl cellulose (CMC) into the culture media, obtaining a BnC-CMC product with denser fibril arrangement, improved rehydration ratio and elasticity in comparison to BnC. The proteolytic enzyme bromelain (Br) and antimicrobial peptide nisin (N) were immobilized to BnC matrix by ex situ covalent binding and/or adsorption. The optimal Br immobilization conditions towards the maximized specific proteolytic activity were investigated by response surface methodology as factor variables. At optimal conditions, i.e., 8.8 mg/mL CMC and 10 mg/mL Br, hyperactivation of the enzyme was achieved, leading to the specific proteolytic activity of 2.3 U/mg and immobilization efficiency of 39.1 %. The antimicrobial activity was observed against Gram-positive bacteria (S. epidermidis, S. aureus and E. faecalis) for membranes with immobilized N and was superior when in situ modified BnC membranes were used. N immobilized on the BnC or BnC-CMC membranes was cytocompatible and did not cause changes in normal human dermal fibroblast cell morphology. BnC membranes perform as an efficient carrier for Br or N immobilization, holding promise in wound debridement and providing antimicrobial action against Gram-positive bacteria, respectively.


Subject(s)
Acetobacteraceae , Bromelains , Cellulose , Nisin , Nisin/pharmacology , Nisin/chemistry , Bromelains/chemistry , Bromelains/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Acetobacteraceae/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/pharmacology , Nanostructures/chemistry , Microbial Sensitivity Tests
2.
Polymers (Basel) ; 13(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34074064

ABSTRACT

Biocompatible and biodegradable poly-l-lactic acid (PLLA) processed into piezoelectric structures has good potential for use in medical applications, particularly for promoting cellular growth during electrostimulation. Significant advantages like closer contacts between cells and films are predicted when their surfaces are modified to make them more hydrophilic. However, there is an open question about whether the surface modification will affect the degradation process and how the films will be changed as a result. For the first time, we demonstrate that improving the polymer surface's wettability affects the position of enzyme-driven degradation. Although it is generally considered that proteinase K degrades only the polymer surface, we observed the enzyme's ability to induce both surface and bulk degradation. In hydrophilic films, degradation occurs at the surface, inducing surface erosion, while for hydrophobic films, it is located inside the films, inducing bulk erosion. Accordingly, changes in the structural, morphological, mechanical, thermal and wetting properties of the film resulting from degradation vary, depending on the film's wettability. Most importantly, the degradation is gradual, so the mechanical and piezoelectric properties are retained during the degradation.

3.
ACS Infect Dis ; 5(9): 1581-1589, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31268675

ABSTRACT

Oleanolic acid (OA) and maslinic acid (MA) are pentacyclic triterpenic compounds that abound in industrial olive oil waste. These compounds have renowned antimicrobial properties and lack cytotoxicity in eukaryotic cells as well as resistance mechanisms in bacteria. Despite these advantages, their antimicrobial activity has only been tested in vitro, and derivatives improving this activity have not been reported. In this work, a set of 14 OA and MA C-28 amide derivatives have been synthesized. Two of these derivatives, MA-HDA and OA-HDA, increase the in vitro antimicrobial activity of the parent compounds while reducing their toxicity in most of the Gram-positive bacteria tested, including a methicillin-resistant Staphylococcus aureus-MRSA. MA-HDA also shows an enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model of infection. A preliminary attempt to elucidate their mechanism of action revealed that these compounds are able to penetrate and damage the bacterial cell membrane. More significantly, their capacity to reduce antibiofilm formation in catheters has also been demonstrated in two sets of conditions: a static and a more challenged continuous-flow S. aureus biofilm.


Subject(s)
Biofilms/drug effects , Gram-Positive Bacteria/physiology , Gram-Positive Bacterial Infections/drug therapy , Lepidoptera/microbiology , Pentacyclic Triterpenes/chemical synthesis , Animals , Bacterial Outer Membrane/drug effects , Cross Infection/drug therapy , Disease Models, Animal , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Structure , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL