Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612883

ABSTRACT

Osteoporosis stands out as a prevalent skeletal ailment, prompting exploration into potential treatments, including dietary strontium ion supplements. This study assessed the efficacy of supplementation of three strontium forms-strontium citrate (SrC), strontium ranelate (SrR), and strontium chloride (SrCl)-for enhancing bone structure in 50 female SWISS mice, aged seven weeks. In total, 40 mice underwent ovariectomy, while 10 underwent sham ovariectomy. Ovariectomized (OVX) mice were randomly assigned to the following groups: OVX (no supplementation), OVX + SrR, OVX + SrC, and OVX + SrCl, at concentrations equivalent to the molar amount of strontium. After 16 weeks, micro-CT examined trabeculae and cortical bones, and whole-bone strontium content was determined. Results confirm strontium administration increased bone tissue mineral density (TMD) and Sr content, with SrC exhibiting the weakest effect. Femur morphometry showed limited Sr impact, especially in the OVX + SrC group. This research highlights strontium's potential in bone health, emphasizing variations in efficacy among its forms.


Subject(s)
Citric Acid , Osteoporosis , Strontium , Thiophenes , Female , Animals , Mice , Bone Density , Chlorides , Citrates , Osteoporosis/drug therapy , Halogens , Disease Models, Animal
2.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474467

ABSTRACT

Isoflavones, belonging to polyphenolic compounds, show structural similarity to natural estrogens, and in this context, they have been extensively studied. Some of them are also applied as cosmetic additives; however, little is known regarding their effects on skin cells. In this investigation, common isoflavones, including genistein, daidzein, glycitein, formononetin, and biochanin A, as well as coumestrol, were evaluated for antioxidant activity and their impact on human skin fibroblasts and keratinocytes. Antioxidant effects were assessed using DPPH, ABTS, and FRAP tests, and the ability to scavenge reactive oxygen species (ROS) was tested in cells with H2O2-provoked oxidative stress. The impact on the activity of antioxidant enzymes (SOD, CAT, GSH) and lipid peroxidation (MDA) was also explored. As shown by Alamar Blue and neutral red uptake assays, the compounds were not toxic within the tested concentration range, and formononetin and coumestrol even demonstrated a stimulatory effect on cells. Coumestrol and biochanin A demonstrated significant antioxidative potential, leading to a significant decrease in ROS in the cells stimulated by H2O2. Furthermore, they influenced enzyme activity, preventing depletion during induced oxidative stress, and also reduced MDA levels, demonstrating protection against lipid peroxidation. In turn, genistein, daidzein, and glycitein exhibited low antioxidant capacity.


Subject(s)
Genistein , Isoflavones , Humans , Genistein/pharmacology , Coumestrol , Reactive Oxygen Species , Phytoestrogens , Antioxidants , Hydrogen Peroxide , Isoflavones/chemistry , Oxidative Stress , Keratinocytes , Fibroblasts
3.
Molecules ; 28(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959803

ABSTRACT

Due to the growing popularity of herbal extract-loaded hydrogels, this study assessed the biological activity of extracts and hydrogels containing three types (water (WE), water-ethanol (EE) and water-glycerin (GE)) of Cornus mas L. (dogwood) extracts. The content of biologically active compounds in the extracts was assessed using the UPLC-DAD-MS technique. Antioxidant properties were assessed by using DPPH and ABTS radicals and measuring the intracellular level of reactive oxygen species. Alamar Blue and Neutral Red tests were used to measure the cytotoxicity of the tested samples on skin cells-fibroblasts and keratinocytes. Cell migration and the anti-aging activity of the tested extracts and hydrogels were assessed. Transepidermal water loss and skin hydration after applying the hydrogels to the skin were also determined. A chromatographic analysis revealed that the extracts contained polyphenols, including gallic, caftaric, protocatechuic, chlorogenic, ellagic and p-coumaroylquinic acids, as well as iridoids, with loganic acid as the predominant component. Additionally, they contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside and quinic acid. The obtained results show that the tested extracts and hydrogels had strong antioxidant properties and had a positive effect on the viability of skin cells in vitro. Additionally, it was shown that they stimulated the migration of these cells and had the ability to inhibit the activity of collagenase and elastase. Moreover, the tested hydrogels increased skin hydration and prevented transepidermal water loss. The obtained results indicate that the developed hydrogels may be effective delivery systems for phytochemicals contained in dogwood extracts.


Subject(s)
Cornus , Dermatology , Antioxidants/chemistry , Cornus/chemistry , Hydrogels , Water , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Life (Basel) ; 13(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38004322

ABSTRACT

Urtica dioica is a species with well-established significance in folk medicine in many countries. It was utilized to support the treatment of arthritis, allergies, and urinary tract disorders; however, the substantial presence of antioxidants suggests that nettle extract could also have a positive impact on the skin. The objective of this study was to assess the impact of nettle extract on human skin fibroblasts subjected to oxidative stress. Various solvents were tested to prepare an extract rich in polyphenolic compounds with high antioxidant potential. The chemical composition was determined using ultra-high-performance liquid chromatography with mass spectrometry (UPLC-DAD-MS). H2O2 treatment was used to induce oxidative stress and cell viability, and the metabolism was evaluated through NR and MTT assays. Our study demonstrated that extraction with 80% ethanol, followed by the drying and re-dissolving of the extract in pure water, was more efficient than direct extraction with water. This yielded an extract rich in polyphenolic compounds, with chlorogenic acid and caffeoylmalic acid as the predominant compounds, averaging 64.9 and 114.4 µg/mL, respectively. The extract exhibited antioxidant properties in the DPPH and ABTS assays. Furthermore, it did not exhibit cytotoxicity and did not negatively affect cell metabolism. In addition, it effectively reduced ROS in the H2O2-stimulated cells, and at the highest concentration tested, the ROS levels returned to those of the untreated control. The extract also protected against H2O2-induced cytotoxicity. The cell viability was maintained at the level of the untreated control when the cells were pretreated with the extract before H2O2 exposure. These findings indicate that U. dioica extract is a valuable and safe additive in skincare products.

5.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686038

ABSTRACT

Due to the high demand for products that can help treat various skin conditions, the interest in plant extracts, which are a valuable source of phytochemicals, is constantly growing. In this work, the properties of extracts and ferments from Cornus mas L. and their potential use in cosmetic products were compared. For this purpose, their composition, antioxidant properties and cytotoxicity against skin cells, keratinocytes and fibroblasts were assessed in vitro. In addition, the ability to inhibit the activity of collagenase and elastase was compared, which enabled the assessment of their potential to inhibit skin aging. Microbiological analyses carried out on different bacterial strains were made in order to compare their antibacterial properties. The conducted analyses showed that both dogwood extract and ferment have antioxidant and anti-aging properties. In addition, they can have a positive effect on the viability of keratinocytes and fibroblasts and inhibit the proliferation of various pathogenic bacteria, which indicates their great potential as ingredients in skin care preparations. The stronger activity of the ferment compared to the extract indicates the legitimacy of carrying out the fermentation process of plant raw materials using kombucha in order to obtain valuable products for the cosmetics industry.


Subject(s)
Antioxidants , Cornus , Antioxidants/pharmacology , Fibrinolytic Agents , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology
6.
Molecules ; 28(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630255

ABSTRACT

Despite the fact that there are many studies related to the adaptogenic and pro-healthy activities of plant-based compounds, there are some adaptogenic plants whose activities are not fully known, especially those coming from the wild regions of Asia, Africa, and South America. The aim of these studies was to examine the contents of non-nutritional compounds, such as polyphenols, flavonoids, and phenolic acids in ten adaptogenic species (Astragalus membranaceus (AM), Uncaria rhynchophylla (UR), Polygonum multiflorum (PM), Angelica sinensis (AS), Andrographis paniculatea (AP), Tinospora cordifolia (TC), Uncaria tomentosa (UT), Pfaffia paniculate (PP), Sutherlandia frutescens (SF), and Rhaponticum carthamoides (RC)). Considering biological activity, their antioxidant (DPPH, ABTS, FRAP, and ferrous-ion-chelating ability assays), anti-acetylcholinesterase, anti-hyaluronidase, and anti-tyrosinase activities were evaluated. The richest in polyphenols, flavonoids, and phenolic acids was UR (327.78 mg GAE/g, 230.13 mg QE/g, and 81.03 mg CA/g, respectively). The highest inhibitions of acetylcholinesterase, hyaluronidase, and tyrosinase were observed for TC, UR, and PM, respectively. In the case of antioxidant properties, extract from PM appeared to most strongly reduce DPPH, extract from UR inhibited ABTS, and extract from SF showed the best chelating properties. It should be noted that a particularly interesting plant was Ulcaria rhynchophylla. The results mean that there were compounds in UR with broad biological activities, and this species should be explored in more detail. Additionally, our results justify the traditional use of these species in the nutripharmacological or ethnopharmacological care systems of different regions.


Subject(s)
Antioxidants , Phenols , Antioxidants/pharmacology , Polyphenols/pharmacology , Africa , Asia , South America , Flavonoids , Acetylcholinesterase
7.
Molecules ; 28(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630400

ABSTRACT

Carlina acaulis is highly valued in the traditional medicine of many European countries for its diuretic, cholagogue, anthelmintic, laxative, and emetic properties. Moreover, practitioners of natural medicine indicate that it has anti-cancer potential. However, its phytochemistry is still little known. In the present study, the polyphenolic composition of the plant was investigated using ultra-high-performance liquid chromatography coupled with a high-resolution/quadrupole time-of-flight mass spectrometer (UHPLC-HR/QTOF/MS-PDA). The fractionation of the extract was carried out using liquid-liquid extraction and preparative chromatography techniques. Cytotoxicity was assessed based on neutral red and MTT assays. The obtained data showed that the species is rich in chlorogenic acids and C-glycosides of luteolin and apigenin. The total amount of chlorogenic acids was 12.6 mg/g. Among flavonoids, kaempferol dihexosidipentose and schaftoside were the most abundant, reaching approximately 3 mg/g, followed by isoorientin, vitexin-2-O-rhamnoside, and vicenin II, each with a content of approximately 2 mg/g. Furthermore, the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and human cervical cancer (HeLa) cells was investigated using the normal epithelial colon cell line (CCD 841CoTr) as a reference. It has been demonstrated that the ethyl acetate fraction was the most abundant in polyphenolic compounds and had the most promising anticancer activity. Further fractionation allowed for the obtaining of some subfractions that differed in phytochemical composition. The subfractions containing polyphenolic acids and flavonoids were characterized by low cytotoxicity against cancer and normal cell lines. Meanwhile, the subfraction with fatty acids was active and decreased the viability of HeLa and HT29 with minimal negative effects on CCD 841CoTr. The effect was probably linked to traumatic acid, which was present in the fraction at a concentration of 147 mg/g of dried weight. The research demonstrated the significant potential of C. acaulis as a plant with promising attributes, thus justifying further exploration of its biological activity.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colorectal Neoplasms , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/drug therapy , Adenocarcinoma/drug therapy , Colorectal Neoplasms/drug therapy , Flavonoids/pharmacology , Plant Extracts/pharmacology
8.
Molecules ; 28(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37513294

ABSTRACT

Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including LC-HRMS-QTOF-CAD, UHPLC-PDA-MS. Phytochemical analysis revealed that the species is a rich source of polyphenolic components, with the most abundant being chlorogenic acid and C-glycosides of luteolin, including carlinoside, orientin, isoorientin, and C-glycosides of apigenin, schaftoside, isoschaftoside, and vitexin. Furthermore, we assessed the impact of the polyphenolic-rich fraction of C. vulgaris extracts on human skin fibroblasts using the MTT and NR assays. It was found that the extract was non-toxic and exhibited potent antioxidant activity in the cells subjected to induced oxidative stress. Additionally, it effectively protected the cells against H2O2-induced cytotoxicity. Our study contributes to the general trend of searching for new phytotherapeutics with potential applications in pharmacy and medicine. The results indicate that further exploration of C. vulgaris species is worthwhile, as they can serve as valuable plant material for cosmetic use.


Subject(s)
Antioxidants , Hydrogen Peroxide , Humans , Antioxidants/chemistry , Hydrogen Peroxide/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycosides/pharmacology , Oxidative Stress , Phytochemicals/pharmacology , Phytochemicals/analysis
9.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373433

ABSTRACT

In this study, an attempt was made to evaluate the antioxidant, anti-inflammatory and protective effects of the Sambucus nigra fruit extract and its ferment obtained by fermentation with kombucha tea fungus. For this purpose, fermented and non-fermented extracts were compared in terms of their chemical composition by the HPLC/ESI-MS chromatographic method. The antioxidant activity of the tested samples was assessed using DPPH and ABTS assays. Cytotoxicity was also determined using Alamar Blue and Neutral Red tests to assess the viability and metabolism of fibroblast and keratinocyte skin cells. Potential anti-aging properties were determined by their ability to inhibit the activity of the metalloproteinases collagenase and elastase. Tests showed that the extract and the ferment have antioxidant properties and stimulate the proliferation of both cell types. The study also assessed the anti-inflammatory activity of the extract and ferment by monitoring levels of the pro-inflammatory interleukins IL-6, IL-1ß, tumor necrosis factor (TNF-α) and anti-inflammatory IL-10 in lipopolysaccharide (LPS)-treated fibroblast cells. The results indicate that both the S. nigra extract and its kombucha ferment can be effective in preventing free-radical-induced cell damage and have positive effects on skin cell health.


Subject(s)
Sambucus nigra , Humans , Sambucus nigra/chemistry , Antioxidants/metabolism , Lipopolysaccharides/metabolism , Water/metabolism , Fruit/chemistry , Anti-Inflammatory Agents/chemistry , Plant Extracts/chemistry , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fibroblasts/metabolism
10.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901817

ABSTRACT

The fruits of R. nigrum L., A. melanocarpa Michx., and V. myrtillus L. are well-known natural plant materials with proven antioxidant activity. This work attempts to compare the antioxidant properties of extracts of these plants and ferments obtained during their fermentation using a consortium of microorganisms referred to as kombucha. As part of the work, a phytochemical analysis of extracts and ferments was carried out using the UPLC-MS method and the content of the main components was determined. The antioxidant properties of the tested samples and their cytotoxicity were assessed with the use of DPPH and ABTS radicals. The protective effect against hydrogen peroxide-induced oxidative stress was also assessed. The possibility of inhibiting the increase in the intracellular level of reactive oxygen species was carried out on both human skin cells (keratinocytes and fibroblasts) and the yeast Saccharomyces cerevisiae (wild-type strains and sod1Δ deletion mutants). The conducted analyses showed that the ferments obtained are characterized by a greater variety of biologically active compounds; in most cases they do not cause a cytotoxic effect, show strong antioxidant properties, and can reduce oxidative stress in both human and yeast cells. This effect depends on the concentration used and the fermentation time. The results obtained indicate that the tested ferments can be considered as an extremely valuable raw material protecting cells against the negative effects of oxidative stress.


Subject(s)
Antioxidants , Hydrogen Peroxide , Humans , Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Saccharomyces cerevisiae , Fruit/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Oxidative Stress , Plant Extracts/pharmacology , Plants
11.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499003

ABSTRACT

Kombucha is a health-promoting beverage that is produced by fermenting sweetened tea using symbiotic cultures of bacteria belonging to the genus Acetobacter, Gluconobacter, and yeast of the genus Saccharomyces. This study compared the cosmetic and dermatological properties of the extracts of the following redberries: R. rubrum, F. vesca, and R. idaeus, and their ferments, which were obtained by fermentation for 10 and 20 days using tea fungus. For this purpose, the fermented and non-fermented extracts were compared in terms of their chemical composition using the HPLC/ESI-MS chromatographic method, demonstrating the high content of biologically active compounds that were present in the ferments. The antioxidant activity of the tested samples was evaluated using DPPH and ABTS tests, as well as by evaluating the scavenging of the external and intracellular free radicals. The cytotoxicity of the extracts and the ferments, as well as the cosmetic formulations, were also determined by conducting Alamar Blue and Neutral Red tests assessing the cell viability and metabolism using skin cell lines: fibroblasts and keratinocytes. In addition, application tests were conducted showing the positive effects of the model cosmetic tonics on the TEWL, the skin hydration, and the skin pH. The results indicate that both the extracts and the ferments that were obtained from kombucha can be valuable ingredients in cosmetic products.


Subject(s)
Tea , Yeasts , Tea/chemistry , Fermentation , Yeasts/metabolism , Beverages/analysis , Antioxidants/metabolism , Caffeine/metabolism
12.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557810

ABSTRACT

The rational exploitation of byproducts is important from the point of view of their potential applicability in various fields. In this study, the possibility of further processing of blackcurrant seeds (BCs), which are a byproduct of fruit processing, was investigated. BCs were used as a material for the extraction of oil on a semi-industrial scale, and the residues were assessed in terms of their potential application in skin care products. Supercritical fluid extraction (SFE) using CO2 at pressures of 230 and 330 bar and extraction temperature of 40 °C was exploited for isolation of oil, and the products were characterised taking into account lipophilic constituents. After 120 min, the oil yields were 19.67% and 20.94% using CO2 at 230 and 330 bar, respectively, which showed that SFE was an effective method on a semi-industrial scale, taking into account the extraction yield. The oils had similar fatty acid compositions with a high percentage of linoleic acid (ca. 43%); however, tocopherols and carotenoids were most abundant in the oil obtained at 230 bar. It was also found that the composition of the SFE oils was comparable with that of cold-pressed oil, which shows that supercritical fluid extraction provides a high-quality product; therefore, it can be an alternative to cold pressing. Furthermore, the chemical compositions of the extracts from the oil isolation residues were established using UPLC-MS, and the impact of the extracts on human skin fibroblasts was assessed using the MTT and NR assays. The quantitative analysis revealed that the residues contained high amounts of polyphenolic acids, including gallic, protocatechuic, and hydroxybenzoic acid derivatives, as well as flavonoids, especially quercetin and kaempferol glucoside. Moreover, it was found that the extracts were nontoxic and exerted a stimulatory effect on cell metabolism. Therefore, they can be a valuable additive to natural plant-based cosmetics. Our results showed that blackcurrant seeds, regarded as a byproduct, can be a valuable material for further use.


Subject(s)
Chromatography, Supercritical Fluid , Ribes , Humans , Plant Oils/chemistry , Carbon Dioxide/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Seeds/chemistry , Plant Extracts/chemistry , Chromatography, Supercritical Fluid/methods
13.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558009

ABSTRACT

Plant extracts have been widely used for skin care for many centuries, and nowadays, they are commonly applied for the development and enrichment of new cosmetic preparations. The present study aimed the assessment of the biological activity of aqueous Schisandra chinensis extracts as a potential ingredient of skin care products. The aspects studied involved the ability to neutralize free radicals, impact on viability and metabolism of keratinocytes, as well as tyrosinase inhibitory potential. Our study showed that aqueous S. chinensis extracts have a positive effect on keratinocyte growth and have high antioxidant potential and strong tyrosinase inhibitory activity. UPLC-MS analysis revealed that three groups of phenolic compounds were predominant in the analyzed extract, including lignans, phenolic acids and flavonoids and protocatechiuc and p-coumaryl quinic acids were predominant. Moreover, microwave-assisted extraction, followed by heat reflux extraction, was the most effective for extracting polyphenols. Furthermore, a prototypical natural body washes gel formulation containing the previously prepared extracts was developed. The irritation potential and viscosity were assessed for each of the formulations. The study demonstrated that the addition of these extracts to body wash gel formulations has a positive effect on their quality and may contribute to a decrease in skin irritation. In summary, S. chinensis aqueous extracts can be seen as an innovative ingredient useful in the cosmetic and pharmaceutical industry.


Subject(s)
Lignans , Schisandra , Antioxidants/pharmacology , Chromatography, Liquid , Monophenol Monooxygenase , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Lignans/pharmacology , Skin Care
14.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558050

ABSTRACT

Supercritical fluid extraction is a powerful analytical tool and it is willingly used by researchers for the isolation of various components from different matrices. In our study, the carbon dioxide in the supercritical state was used for the extraction of oils from blackcurrant and black cumin seeds. To determine the optimal conditions for the process (temperature, pressure and time), the method of statistical experiment planning and the Box-Behnken design was applied and the yield of the oils and the content of fatty acids (FAs) were taken into consideration. It has been found that an increase in pressure causes an increase in extraction yield (W), and an increase in temperature, both at constant pressure and time, does not significantly change the yield value. Optimal yield values were obtained for both materials under almost similar extraction parameters: 306 bar/ 43 min/ 50 °C (blackcurrant) and 282 bar/ 40 min/ 50 °C (black cumin). The influence of the above parameters (T, p, t) on the content of FAs in the extracts has a slightly different trend. The use of supercritical carbon dioxide for the extraction of blackcurrant and black cumin seeds allowed for high process yield and high-quality, rich in polyunsaturated fatty acids oils which can be used as a substrate or final product for industry.


Subject(s)
Chromatography, Supercritical Fluid , Cuminum , Nigella sativa , Plant Oils/chemistry , Chromatography, Supercritical Fluid/methods , Carbon Dioxide/chemistry , Pressure , Seeds/chemistry , Fatty Acids/analysis , Temperature
15.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430233

ABSTRACT

Cornus mas L. is a rich source of valuable compounds with pro-health properties and, therefore, may be attractive for the pharmaceutical and cosmetic industry. This paper attempts to assess the antioxidant, anti-inflammatory, and protective effect of an extract from C. mas fruit on skin cells in vitro. The phytochemical analysis of the extract was carried out using UPLC-MS and the content of the main components was determined. The biological activity of the extract was assessed by in vitro analysis using two human cell lines: keratinocytes (HaCaT) and fibroblasts (BJ). Additionally, the ability of this extract to regulate gene expression (SOD-1, Nox-4) in skin cells was evaluated. Moreover, the impact of the extract and its main components, including loganic acid and cornuside, on the level of inflammatory cytokines in H2O2-treated cells was assessed. The tests showed that the extract has strong antioxidant properties and stimulates the proliferation of both types of cells. The results evidence that the Cornus mas L. fruit extract significantly reduces the level of reactive oxygen species in the cells tested and can modulate the expression of genes closely related to oxidative stress. Moreover, it suppresses the production of IL-6, IL-8, and TNF-α, and the effect was related to loganic acid and cornuside. The present research indicates that the analyzed dogwood extract can be an effective means of prevention of cell damage caused by free radicals and have a positive effect on the condition of skin cells.


Subject(s)
Cornus , Humans , Cornus/chemistry , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Hydrogen Peroxide/pharmacology , Chromatography, Liquid , Plant Extracts/chemistry , Tandem Mass Spectrometry , Keratinocytes , Oxidative Stress , Fibroblasts , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
16.
Molecules ; 27(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014338

ABSTRACT

Natural cosmetics are becoming more and more popular every day. For this reason, this work investigates the properties of mushroom extracts, which are not as widely used in the cosmetics industry as plant ingredients. Water extracts of Grifolafrondosa (Maitake), Hericiumerinaceus (Lion's Mane) and Ganoderma lucidum (Reishi) were tested for their antioxidant properties, bioactive substances content, skin cell toxicity, ability to limit TEWL, effect on skin hydration and pH, and skin irritation. Our research showed that Maitake extract contained the highest amount of flavonoids and phenols, and also showed the most effective scavenging of DPPH and ABTS radicals as well as Chelation of Fe2+ and FRAP radicals, which were 39.84% and 82.12% in a concentration of 1000 µg/mL, respectively. All tested extracts did not increase the amount of ROS in fibroblasts and keratinocytes. The addition of mushroom extracts to washing gels reduced the irritating effect on skin, and reduced the intracellular production of free radicals, compared with the cosmetic base. Moreover, it was shown that the analyzedcosmetics had a positive effect on the pH and hydration of the skin, and reduced TEWL.


Subject(s)
Cosmetics , Grifola , Reishi , Antioxidants/chemistry , Antioxidants/pharmacology , Gels , Plant Extracts/pharmacology , Reishi/chemistry
17.
Molecules ; 27(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35566166

ABSTRACT

The Chelidonium majus plant is rich in biologically active isoquinoline alkaloids. These alkaline polar compounds are isolated from raw materials with the use of acidified water or methanol; next, after alkalisation of the extract, they are extracted using chloroform or dichloromethane. This procedure requires the use of toxic solvents. The present study assessed the possibility of using volatile natural deep eutectic solvents (VNADESs) for the efficient and environmentally friendly extraction of Chelidonium alkaloids. The roots and herb of the plant were subjected three times to extraction with various menthol, thymol, and camphor mixtures and with water and methanol (acidified and nonacidified). It has been shown that alkaloids can be efficiently isolated using menthol-camphor and menthol-thymol mixtures. In comparison with the extraction with acidified methanol, the use of appropriate VNADESs formulations yielded higher amounts of protopine (by 16%), chelidonine (35%), berberine (76%), chelerythrine (12%), and coptisine (180%). Sanguinarine extraction efficiency was at the same level. Additionally, the values of the contact angles of the raw materials treated with the tested solvents were assessed, and higher wetting dynamics were observed in the case of VNADESs when compared with water. These results suggest that VNADESs can be used for the efficient and environmentally friendly extraction of Chelidonium alkaloids.


Subject(s)
Alkaloids , Chelidonium , Camphor , Deep Eutectic Solvents , Isoquinolines , Menthol , Methanol , Plant Extracts , Solvents , Thymol , Water
18.
Molecules ; 27(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408743

ABSTRACT

Leaves of Rubus fruticosus L., Vaccinum myrtillus L., Ribes nigrum L. and Fragaria vesca L. are considered agro-waste of the berry industry, but they can be a rich source of valuable bioactive compounds used in cosmetic industry. In this study, kombucha-fermented and non-fermented extracts were compared in terms of chemical composition and biological activity. Polyphenol compounds were identified by HPLC/DAD/ESI-MS. The antioxidant potential was analyzed by evaluating the scavenging of intracellular free radicals contained in keratinocytes and fibroblasts and by DPPH and ABTS assay, obtaining a higher radical scavenging capacity for the ferments, especially for R. fruticosus and V. myrtillus ferments. Assessment of the cytotoxicity on skin cell lines showed their positive effect on the viability of fibroblasts and keratinocytes (especially for the ferments after 10 days of fermentation). The potential anti-ageing properties were determined by their ability to inhibit the activity of metalloproteinases, obtaining almost 30% inhibition of collagenase and elastase in the case of fermented V. myrtillus. Moreover, when the samples were applied to the skin, the positive effect of ferments on skin hydration and pH was demonstrated, which indicates that kombucha berry leaf extracts may be an innovative cosmetic ingredient.


Subject(s)
Cosmetics , Ribes , Antioxidants/chemistry , Antioxidants/pharmacology , Cosmetics/chemistry , Fruit , Plant Extracts/chemistry , Plant Extracts/pharmacology , Ribes/chemistry
19.
Sci Rep ; 11(1): 18792, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552134

ABSTRACT

Kombucha is a beverage made by fermenting sugared tea using a symbiotic culture of bacteria belonging to the genus Acetobacter, Gluconobacter, and the yeasts of the genus Saccharomyces along with glucuronic acid, which has health-promoting properties. The paper presents the evaluation of ferments as a potential cosmetic raw material obtained from Yerba Mate after different fermentation times with the addition of Kombucha. Fermented and unfermented extracts were compared in terms of chemical composition and biological activity. The antioxidant potential of obtained ferments was analyzed by evaluating the scavenging of external and intracellular free radicals. Cytotoxicity was determined on keratinocyte and fibroblast cell lines, resulting in significant increase in cell viability for the ferments. The ferments, especially after 14 and 21 days of fermentation showed strong ability to inhibit (about 40% for F21) the activity of lipoxygenase, collagenase and elastase enzymes and long-lasting hydration after their application on the skin. Moreover, active chemical compounds, including phenolic acids, xanthines and flavonoids were identified by HPLC/ESI-MS. The results showed that both the analyzed Yerba Mate extract and the ferments obtained with Kombucha may be valuable ingredients in cosmetic products.


Subject(s)
Cosmetics/metabolism , Fermented Beverages , Ilex paraguariensis , Kombucha Tea , Acetobacter/metabolism , Cosmetics/pharmacology , Dermatologic Agents/metabolism , Dermatologic Agents/pharmacology , Fermentation , Gluconobacter/metabolism , HaCaT Cells/drug effects , Humans , Ilex paraguariensis/metabolism , Inhibitory Concentration 50 , Matrix Metalloproteinases/metabolism , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Saccharomyces/metabolism , Time Factors
20.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202180

ABSTRACT

In nature, plants usually produce secondary metabolites as a defense mechanism against environmental stresses. Different stresses determine the chemical diversity of plant-specialized metabolism products. In this study, we applied an abiotic elicitor, i.e., NaCl, to enhance the biosynthesis and accumulation of phenolic secondary metabolites in Melissa officinalis L. Plants were subjected to salt stress treatment by application of NaCl solutions (0, 50, or 100 mM) to the pots. Generally, the NaCl treatments were found to inhibit the growth of plants, simultaneously enhancing the accumulation of phenolic compounds (total phenolics, soluble flavonols, anthocyanins, phenolic acids), especially at 100 mM NaCl. However, the salt stress did not disturb the accumulation of photosynthetic pigments and proper functioning of the PS II photosystem. Therefore, the proposed method of elicitation represents a convenient alternative to cell suspension or hydroponic techniques as it is easier and cheaper with simple application in lemon balm pot cultivation. The improvement of lemon balm quality by NaCl elicitation can potentially increase the level of health-promoting phytochemicals and the bioactivity of low-processed herbal products.


Subject(s)
Melissa/physiology , Phenols/metabolism , Phytochemicals/metabolism , Plant Physiological Phenomena , Sodium Chloride/metabolism , Biomass , Melissa/drug effects , Secondary Metabolism , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL