Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34894926

ABSTRACT

The present study investigated the therapeutic effects of the curcumin derivative 3-[(1E)-2-(1H-indol-6-yl)ethenyl]-5-[(1E)-2-[2-methoxy-4-(2-pyridylmethoxy)phenyl]ethenyl]-1H-pyrazole (GT863) in amyotrophic lateral sclerosis (ALS). The inhibitory effect of GT863 on superoxide dismutase 1 (SOD1) aggregation was evaluated in cell-free assays. GT863 interfered with the conformational changes of the SOD1 protein and later, oligomeric aggregation. Furthermore, its antioxidant, anti-inflammatory, and neuroprotective effects were evaluated in cell-free and cultured cell assays. GT863 inhibited H2O2- and glutamate-induced cytotoxicity and activated an antioxidant responsive element pathway. Additionally, in vivo effects of GT863 in the ALS mice model were evaluated by its oral administration to H46R mutant SOD1 transgenic mice. Rotarod test showed that GT863 administration significantly slowed the progression of motor dysfunction in the mice. In addition, GT863 substantially reduced highly-aggregated SOD1, further preserving large neurons in the spinal cord of GT863-treated mice. Collectively, these results indicated that GT863 could be a viable therapeutic agent with multiple vital actions for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Curcumin , Mice , Animals , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Antioxidants/therapeutic use , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/therapeutic use , Mice, Transgenic , Superoxide Dismutase/genetics , Disease Models, Animal , Spinal Cord/metabolism
2.
J Alzheimers Dis ; 59(1): 313-328, 2017.
Article in English | MEDLINE | ID: mdl-28598836

ABSTRACT

Aggregation of amyloid-ß (Aß) and tau plays a crucial role in the onset and progression of Alzheimer's disease (AD). Therefore, the inhibition of Aß and tau aggregation may represent a potential therapeutic target for AD. Herein, we designed and synthesized both Aß and tau dual aggregation inhibitors based on the structure of curcumin and developed the novel curcumin derivative PE859. In this study, we investigated the inhibitory activity of PE859 on Aß aggregationin vitro and the therapeutic effects of PE859 on cognitive dysfunction via dual inhibition of Aß and tau aggregation in vivo. PE859 inhibited Aß aggregation in vitro and protected cultured cells from Aß-induced cytotoxicity. Furthermore, PE859 ameliorated cognitive dysfunction and reduced the amount of aggregated Aß and tau in brains of senescence-accelerated mouse prone 8 (SAMP8). These results warrant consideration of PE859 as a candidate drug for AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Cognition Disorders/drug therapy , Cognition Disorders/metabolism , Indoles/therapeutic use , Protein Aggregates/drug effects , Pyrazoles/therapeutic use , tau Proteins/metabolism , Aging/genetics , Amyloid beta-Peptides/ultrastructure , Animals , Brain/drug effects , Brain/metabolism , Brain/ultrastructure , Cell Line, Tumor , Cognition Disorders/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , L-Lactate Dehydrogenase/metabolism , Maze Learning/drug effects , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Motor Activity/drug effects , Neuroblastoma/pathology , Quartz Crystal Microbalance Techniques , Time Factors , tau Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL