Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Chemosphere ; 340: 139906, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611771

ABSTRACT

Increasing loading of phosphorus (P) into freshwater systems is deemed as one of the key drivers triggering harmful algal blooms (HABs). However, conventional water quality monitoring of P normally uses the operational cutoff (e.g., 450-nm filter membrane) to separate particulate and dissolved phases (entities passing through the 450-nm membrane are regarded as dissolved phase), which completely neglects the roles of small colloids (450-100 nm) and nanoparticles (100-1 nm). Herein, a new particle size separation approach was used to separate water samples collected from catfish aquaculture ponds in west Alabama into six size fractions: large particles (>1000 nm), large colloids (1000-450 nm), small colloids (450-100 nm), large nanoparticles (100-50 nm), small nanoparticles (50-1 nm), and the truly dissolved phase (<1 nm). The speciation and concentration of P in these six size fractions were then investigated using Hedley's sequential extraction method. The new particle size separation results showed that particle loading (mass) followed the order: >1000 nm, 450-100 nm, 1000-450 nm, 100-50 nm, and 50-1 nm. This is mainly due to the abundance of large-sized (>1000 nm) zooplankton and phytoplankton such as algae and cyanobacteria in the catfish aquaculture ponds. Importantly, the small colloid (450-100 nm) and nanoparticle (100-1 nm) size fractions, which were previously regarded as the dissolved phase using the 450-nm membrane filtration operation, accounted for ∼41.8% of the total particle mass. The Hedley's sequential extraction results showed that sodium hydroxide (NaOH)-extracted P represented the largest P pool, followed by water (H2O)- and sodium bicarbonate (NaHCO3)-extracted P pools. Smaller particles exhibited a higher loading of P due to their large surface areas. These new findings suggest that the new particle size separation approach needs to be adopted for future water quality monitoring and mitigation of HABs in freshwater ecosystems.


Subject(s)
Catfishes , Nanoparticles , Animals , Phosphorus , Ponds , Alabama , Ecosystem , Aquaculture , Colloids
2.
Water Res ; 241: 120134, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37262944

ABSTRACT

The expansion of algal bloom in surface waters is a global problem in the freshwater ecosystem. Differential reactivity of organic phosphorus (Po) compounds from organic debris, suspended particulate matter (SPM), and sediment towards hydrolysis can dictate the extent of supply often limited inorganic P (Pi) for algal growth, thereby controlling the extent of bloom. Here, we combined solution P-31 nuclear magnetic resonance (31P NMR), sequential extraction, enzymatic hydrolysis, and 16S rRNA measurements to characterize speciation and biogeochemical cycling of P in Lake Erhai, China. Lower ratios of diester-P/monoester-P in SPM in January (mean 0.09) and July (0.14) than that in April (0.29) reflected the higher degree of diester-P remineralization in cold and warm months. Both H2O-Pi and Po were significantly higher in SPM (mean 1580 mg ·kg-1 and 1618 mg ·kg-1) than those in sediment (mean 8 mg ·kg-1 and 387 mg ·kg-1). In addition, results from enzymatic hydrolysis experiments demonstrated that 61% Po in SPM and 58% in sediment in the H2O, NaHCO3, and NaOH extracts could be hydrolyzed. These results suggested that H2O-Pi and Po from SPM were the primarily bioavailable P sources for algae. Changes of Pi contents (particularly H2O-Pi) in algae and alkaline phosphatase activity (APA) during the observation periods were likely to be controlled by the strategies of P uptake and utilization of algae. P remobilization/remineralization from SPM likely resulted from algae and bacteria (e.g., Pseudomonas). Collectively, these results provide important insights that SPM P could sustain the algal blooms even if the dissolved P was depleted in the water column.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Phosphorus/chemistry , Ecosystem , Lakes/chemistry , RNA, Ribosomal, 16S , Geologic Sediments/chemistry , Water Pollutants, Chemical/chemistry , Eutrophication , Particulate Matter
3.
Chemosphere ; 320: 138062, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36746251

ABSTRACT

Phosphorus (P) over-loading is often a central topic due to its linkage to harmful algal blooms (HABs) and its importance in wastewater treatment that has fueled immediate remediation attempts to reduce P loading from point (e.g., wastewater) and nonpoint sources (e.g., fertilizers). Conventional remediation techniques (e.g., filtration) are often expensive, ineffective, and difficult to implement at large scales. The flue gas desulfurization (FGD) gypsum produced as an energy plant waste byproduct has recently been advocated as a physiochemical remediation strategy for P through sorptive removal. However, limited research is available on the practical applications of FGD gypsum for P removal from water. Herein, batch sorption experiments were performed to investigate the sorptive removal efficiency of P by FGD gypsum under environmentally relevant P concentrations (0.01-0.25 mM). In parallel, fixed-bed column experiments packed with FGD gypsum were performed using elevated P concentrations (0.1-1.0 mM) to understand the scalability of FGD gypsum for large-scale practical applications. During batch experiments, P sorption equilibrium was reached within 24 h that includes an initially fast step (via boundary layer diffusion), followed by a slow rate-determining step (via intraparticle diffusion). P sorption kinetics followed the pseudo second-order kinetics, indicating chemisorption. P sorption at equilibrium can be simulated by both the Freundlich and Langmuir sorption isotherms. The Langmuir sorption isotherm yielded a maximum sorption capacity (Qmax) of 36.1 mM kg-1. The fixed-bed column experimental results showed that sorption rate depends on the applied flow rate, irrespective of the tested P concentrations. Our findings can be extrapolated to evaluate the feasibility and scalability of FGD gypsum in removing P to counteract P runoff and mitigate HABs and P-loaded wastewater.


Subject(s)
Calcium Sulfate , Phosphorus , Wastewater , Filtration , Physics
4.
Environ Sci Pollut Res Int ; 27(26): 32842-32855, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32519110

ABSTRACT

The effects of clay particles (montmorillonite, M) and phosphate (P) on the transport of hydrochar nanoparticles (NPs) in water-saturated porous media (uncoated and aluminum (Al) oxide-coated sands) were explored in NaCl (1-50 mM) solutions. Our results showed that the deposition behaviors of hydrochar NPs affected by M and phosphate were significantly different between pH 6.0 and pH 9.0, especially in Al oxide-coated sand. This can be attributed to their distinct surface characteristics: hydrochar agglomerates with a larger pore size distribution, more carboxylate groups, and less negative charges on the surface at pH 9.0 than those at pH 6.0. In Al oxide-coated sand, block adsorption of hydrochar was alleviated appreciably with the presence of M due to the preferential preoccupies of M on these favorable retention sites. On the contrary, M substantially increased the hydrochar retention on uncoated sand due to the formation of nanoaggregates between hydrochar and M. Differently, phosphate substantially enhanced the transport of hydrochar, even in coated sand, due to the strong phosphate adsorption onto Al oxide on the surface of sand and hydrochar. Our findings will provide useful insights into designing effective strategies for land application of hydrochar while minimizing potential environmental risks. Graphical abstract.


Subject(s)
Nanoparticles , Silicon Dioxide , Adsorption , Aluminum Oxide , Porosity
5.
Sci Total Environ ; 669: 911-919, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30970458

ABSTRACT

In the rhizosphere of flooded paddy soils, the solubilization, efflux, and uptake of phosphorus (P) are highly intertwined with iron (Fe) redox cycling. However, the direct observation of Fe-P coupling in the rhizosphere is challenging. This study combined high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques to capture the one-dimensional distributions of soluble reactive P (SRP), soluble Fe(II), and labile P and Fe in the root zone of rice (Oryza sativa L.), respectively. The results show a depletion of soluble/labile P and Fe concentrations around the rice root zone, compared to anaerobic bulk soils that have two different soil Olsen-P levels. Two-dimensional (2D) measurements of DGT-labile P concentrations exhibited similar but stronger trends of P depletion due to uptake of P from soil solids. In low-P soil treatment, 97.8% soluble Fe(II) was depleted in the rice root zone relative to bulk soil, and a 540% enrichment of total Fe in Fe plaques appeared in comparison to that in high-P soil. This demonstrated that the rice plant showed an adaptive metabolic reaction to combat P deficiency in low-P soil by increasing Fe plaque formation. This reaction directly resulted in stronger depletion of P in low-P soil, as indicated by the results of 2D measurements of DGT-labile P concentrations. Moreover, the significant (P < 0.001, R2 = 0.175-0.951) positive corrections between SRP vs. soluble Fe(II), and DGT-labile P vs. Fe were observed in combination with pronounced peaks at the same position in the rice root zone, thus verifying that the cycling of Fe dictated P depletion. A notably lower value of the DGT-labile Fe/P ratio was found in high-P soil, which indicates a relatively higher risk of P release compared to that in low-P soil.


Subject(s)
Floods , Iron/metabolism , Oryza/metabolism , Phosphorus/metabolism , Soil/chemistry , Environmental Monitoring , Fertilizers/analysis , Oryza/growth & development
6.
Chemosphere ; 221: 392-402, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30641380

ABSTRACT

Toxic substances such as heavy metals or persistent organic pollutants raise global environmental concerns. Thus, diverse water decontamination approaches using nano-adsorbents and/or photocatalysts based on nanotechnology are being developed. Particularly, many studies have examined the removal of organic and inorganic contaminants with novel graphene-based nano spinel ferrites (GNSFs) as potential cost-effective alternatives to traditionally used materials, owing to their enhanced physical and chemical properties. The introduction of magnetic spinel ferrites into 2-D graphene-family nanomaterials to form GNSFs brings various benefits such as inhibited particle agglomeration, enhanced active surface area, and easier magnetic separation for reuse, making the GNSFs highly efficient and eco-friendly materials. Here, we present a short review on the state-of-the-art progresses on developments of GNSFs, as well as their potential application for removing several recalcitrant contaminants including organic dyes, antibiotics, and heavy metal ions. Particularly, the mechanisms involved in the adsorptive and photocatalytic degradation are thoroughly reviewed, and the reusability of the GNSFs is also highlighted. This review concludes that the GNSFs hold great potential in remediating contaminated aquatic environments. Further studies are needed for their practical and large-scale applications.


Subject(s)
Ferric Compounds/chemistry , Graphite/chemistry , Water Pollutants, Chemical/isolation & purification , Aluminum Oxide , Magnesium Oxide , Water Pollutants, Chemical/chemistry , Water Purification/methods
7.
Water Res ; 147: 350-361, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30321825

ABSTRACT

Remediating uranium contamination becomes a worldwide interest because of increasing uranium release from mining activities. Due to ubiquitous presence of pyrite and the application of iron-based technology, colloidal iron oxy-hydroxides such as akaganéite colloid (AKC) extensively exist in uranium polluted water at uranium tailing sites. In this context, we studied individual and co-transport of U(VI) and AKC in water-saturated sand columns at 50 mg/L AKC and environmentally relevant U(VI) concentrations (5.0 × 10-7 ∼ 5.0 × 10-5 M). It was found that, in addition to the impact of pH and ionic strength, whether AKC facilitated U(VI) transport depended on U(VI) concentration as well. The presence of AKC facilitated U(VI) transport at relatively low U(VI) concentration (5.0 × 10-7 ∼ 5.0 × 10-6 M), which was due to the strong adsorption of U(VI) on AKC and faster transport of AKC than that U(VI) as observed in their individual transport experiments. At relatively high U(VI) concentrations (5.0 × 10-5 M), however, AKC impeded U(VI) transport because U(VI) of high concentration decreased AKC colloidal stability and increased AKC aggregation and attachment. Thus, U(VI) and AKC co-transport was even blocked completely at relatively high pH and ionic strength. The mechanisms behind the co-transport of U(VI) and AKC were also confirmed by assessing the evolutions of aqueous pH and AKC zeta potential and particle size distribution in the column effluents. A two-site non-equilibrium model and a two-site kinetic attachment/detachment model well-described the breakthrough curves of U(VI) and AKC, respectively. Knowledge generated from this study provides a thorough understanding of uranium transport in the absence/presence of AKC, and brings new insights into the influence of contaminant concentration on co-transport in the presence of colloids.


Subject(s)
Uranium , Water , Adsorption , Colloids , Ferric Compounds , Hydrogen-Ion Concentration , Osmolar Concentration , Porosity
8.
Environ Pollut ; 243(Pt B): 1368-1375, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30273863

ABSTRACT

The (un)intentional release of titanium dioxide nanoparticles (TiO2 NPs) poses potential risks to the environment and human health. Phosphorus (P) and humic acid (HA) usually coexist in the natural environments. This study aims at investigating the transport and retention behaviors of TiO2 NPs in the single and binary systems of P and HA in water-saturated porous media. The experimental results showed that HA alone favored the transport of TiO2 NPs in sand columns to a greater extent than that of P alone at pH 6.0. Interestingly, the co-presence of P and HA acting in a synergistic fashion enhanced the transport of TiO2 NPs in sand-packed columns more significantly compared to that in the single-presence of P or HA. Particularly, P plays a dominant role in the synergistic effect. This is largely due to the competitive effect between P and HA for the same adsorption sites on the sand surfaces favorable for TiO2 NPs retention. A two-site kinetic attachment model that considers Langmuirian blocking of particles at one site provided a good approximation of TiO2 NPs transport. Modeled first-order attachment coefficient (k2) and the maximum solid-phase retention capacity on site 2 (Smax2) for P or HA alone were larger than those in the co-presence of P and HA, suggesting a less retention degree of TiO2 NPs in the binary system of P and HA. Our findings indicate that the mobility of TiO2 NPs is expected to be appreciable in soil and water environments, where P and HA are rich and always co-present at low pH conditions.


Subject(s)
Humic Substances/analysis , Nanoparticles/chemistry , Phosphorus/analysis , Titanium/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Osmolar Concentration , Porosity , Silicon Dioxide , Water , Water Pollutants, Chemical/chemistry
9.
Environ Sci Technol ; 49(14): 8461-70, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26084013

ABSTRACT

Attributable to their nanoscale size and slow phosphorus (P) release kinetics, hydroxyapatite nanoparticles (HANPs) are increasingly advocated as a promising P nanofertilizer. Additionally, HANPs have been extensively used to remediate soils, groundwater, and nuclear wastewaters contaminated with metals and radionuclides. Increasing application of HANPs for agronomic and environmental advantages will expedite their dissemination in subsurface environments. Because the biogeochemical cycling of P is intimately coupled with iron, it is anticipated that HANPs and released P from HANPs interact with iron oxides, particularly naturally occurring goethite nanoparticles (GNPs) because of their nanoscale size and high reactivity toward P. Here, we investigated the cotransport and retention of HANPs and GNPs in water-saturated sand columns under environmentally relevant transport conditions (pH and natural organic matter type and concentration). Our results indicated that the "size-selective retention", i.e., preferential retention of larger particles near the column inlet and elution of smaller particles occurred during cotransport of HANPs and GNPs, and the cotransport of both NPs is highly sensitive to solution chemistry that determines NPs dissolution, homo- and heteroaggregation, and co- and competitive-retention. These findings have important insights into application of HANPs as a promising P nanofertilizer and an in situ amendment for contaminated site remediation.


Subject(s)
Durapatite/chemistry , Fertilizers , Iron Compounds/chemistry , Minerals/chemistry , Nanoparticles/chemistry , Ferric Compounds/chemistry , Groundwater , Hydrogen-Ion Concentration , Iron/chemistry , Kinetics , Phosphorus/chemistry , Porosity , Silicon Dioxide , Soil
SELECTION OF CITATIONS
SEARCH DETAIL