Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Funct Plant Biol ; 50(8): 649-662, 2023 08.
Article in English | MEDLINE | ID: mdl-37308083

ABSTRACT

In view of the importance of inorganic phosphate to plant growth and development, the role of phosphate transporters responsible for absorption and transportation in crops has attracted increasing attention. In this study, bioinformatics analysis and subcellular localisation experiment showed that GmPHT4;10 is a member of PHT4 subfamily of phosphate transporters and located in chloroplasts. The gene was induced by phosphate deficiency and drought, and was the highest in leaves. After GmPHT4;10 gene was replenished to AtPHT4;5 gene deletion mutant lines (atpht4;5 ), the phenotype of the transgenic lines was basically recovered to the level of wild-type, but there were significant differences in phosphate content and photosynthetic indicators between wild-type and revertant lines. Meanwhile, the difference of proline content and catalase activity between the two lines also indicated that GmPHT4;10 gene and its orthologous gene AtPHT4;5 were different in drought resistance and drought resistance mechanism. After overexpression of GmPHT4;10 gene in Arabidopsis thaliana , more phosphate and proline were accumulated in chloroplasts and catalase activity was increased, thus improving photosynthesis and drought resistance of plants. The results further supplement the cognition of PHT4 subfamily function, and provides new ideas and ways to improve photosynthesis by revealing the function of chloroplast phosphate transporter.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Drought Resistance , Catalase/metabolism , Photosynthesis/genetics , Chloroplasts/metabolism , Arabidopsis/genetics , Plants/metabolism , Phosphates/metabolism
2.
Biomed Pharmacother ; 93: 352-358, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28651236

ABSTRACT

Tanshinone I from tanshen has been used in traditional Chinese medicine for treating cardiovascular diseases and inflammatory diseases. Given the link between inflammation and Type 2 diabetes mellitus (T2DM), we suspect that tanshinone I may have a beneficial effect on T2DM. This study was to investigate the potential effects of tanshinone I on T2DM and its underlying mechanism. T2DM was thus induced in Sprague-Dawley (SD) rats using streptozotocin (STZ) and high-fat diet. It was observed that T2DM rats had higher levels of total cholesterol (TC), nonesterified fatty acids (NEFAs), total triglyceride (TG) and total low density lipoprotein cholesterol (LDL-C) compared with normal, healthy SD rats. Treatment with tanshinone I decreased these levels and lowered blood glucose level in T2DM rats. In addition, enzyme-linked immunosorbent assay (ELISA) analysis showed that T2DM rats had elevated levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Furthermore, Western blot analysis revealed that T2DM rats had enhanced nuclear translocation of NF-κB as well as elevated phosphorylation of Ser307 in IRS-1(insulin receptor substrate 1). Treatment by tanshinone I lowered the levels of IL-6 and TNF-α, decreased nuclear translocation of NF-κB as well as phosphorylation of Ser307 in IRS-1. These results demonstrated that tanshinone I could alleviate T2DM syndrome in rats.


Subject(s)
Abietanes/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance/physiology , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Interleukin-6/metabolism , Medicine, Chinese Traditional/methods , NF-kappa B/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Streptozocin/pharmacology , Tumor Necrosis Factor-alpha/metabolism
3.
Article in English | MEDLINE | ID: mdl-28421123

ABSTRACT

The chickpea, a food and medicine used by the people of Xinjiang, has a beneficial hypoglycemic effect. To better utilize this national resource and develop hypoglycemic agents from components of the chickpea, a series of new derivatives of isoflavone compounds from the chickpea were synthesized. An insulin-resistant (IR) HepG2 cell model was used to screen the hypoglycemic activities of these compounds. And the structure-activity relationships of these compounds were explored. Additionally, several combinations of these compound displayed higher hypoglycemic activity than any single compound, and they had similar hypoglycemic activity to that of the positive control group (p > 0.05). In addition, combination 3 and combination 6 exerted different effects on the insulin sensitivity of H4IIE cells stimulated with resistin. And the results indicated that combination 3 would have higher hypoglycemic activity. These findings demonstrate the characteristics of multiple components and targets of Chinese herbal medicine. This evidence may provide new ideas for the development of hypoglycemic drugs.

4.
J Tradit Chin Med ; 37(5): 588-598, 2017 Oct.
Article in English | MEDLINE | ID: mdl-32188218

ABSTRACT

OBJECTIVE: To assess the effect of a mixture of five herbal extracts (FT-5) on insulin resistance, glucose/lipid metabolism, hepatic steatosis, and to investigate whether the combination of FT-5 and pioglitazone would provide a robust effect on diabetes treatment, while may minimize undesirable side-effects of pioglitazone in diabetic Ay gene (KKAy) mice. METHODS: Seven-week-old KKAy mice were randomly divided into five groups: control (CON) group, FT-5 (2.0 g/kg) group, pioglitazone (20 mg/kg) (PIO) group, pioglitazone (20 mg/kg) + FT-5 (2.0 g/kg) (P + F) group. Age-matched C57BL/6J mice were used as the control group. After seven weeks of continuous intragastric administration of medication, the glucose metabolism, insulin sensitivity and lipid metabolism of KKAy mice were evaluated by assessing the fasting blood glucose (FBG), oral glucose tolerance test (OGTT), fasting serum insulin (FINS), insulin tolerance test (ITT), homeostasis model of assessment-insulin resistance index (HOMA-IR), total cholesterol (TC), total triglycerides (TG), and free fatty acids (FFA) in plasma and liver. Plasma and hepatic adiponectin were measured via enzyme-linked immunosorbent assays. Genes related to adipogenesis and lipolysis in white adipose tissues (WAT) and liver were examined by real-time polymerase chain reaction. Lipid metabolism-related protein expression in the liver of KKAy mice were detected by Western blotting. RESULTS: PIO treatment remarkably improved insulin resistance. However, it also showed substantial side effects. FT-5 group exhibited no significant decrease in serum glucose. However, it reduced fasting plasma TG levels and improved hepatic steatosis of KKAy mice. P + F group showed improved insulin resistance and similar body weight gain, as compared with control group. The mRNA expression of genes related to fatty acid oxidation was markedly up-regulated in the liver of P + F group. Pioglitazone administration markedly decreased the phosphorylation levels of AMPK, as compared with all other groups. Besides, even though plasma adiponectin increased in PIO, FT-5, P + F group, adipoR2 gene expression significantly decreased in the liver of PIO group. CONCLUSION: FT-5 decreased plasma TG and alleviated aggravating hepatic steatosis induced by pioglitazone in KKAy mice. FT-5's mechanism might be associated with its ability to activate the AdipoR2/AMPK pathway.

SELECTION OF CITATIONS
SEARCH DETAIL