Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 275: 116264, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564869

ABSTRACT

Triocresyl phosphate (TOCP) was commonly used as flame retardant, plasticizer, lubricant, and jet fuel additive. Studies have shown adverse effects of TOCP on the reproductive system. However, the potential harm brought by TOCP, especially to mammalian female reproductive cells, remains a mystery. In this study, we employed an in vitro model for the first time to investigate the effects of TOCP on the maturation process of mouse oocytes. TOCP exposure hampered the meiotic division process, as evidenced by a reduction in the extrusion of the first polar body from oocytes. Subsequent research revealed the disruption of the oocyte cell cytoskeleton induced by TOCP, resulting in abnormalities in spindle organization, chromosome alignment, and actin filament distribution. This disturbance further extended to the rearrangement of organelles within oocytes, particularly affecting the mitochondria. Importantly, after TOCP treatment, mitochondrial function in oocytes was impaired, leading to oxidative stress, DNA damage, cell apoptosis, and subsequent changes of epigenetic modifications. Supplementation with nicotinamide mononucleotide (NMN) alleviated the harmful effects of TOCP. NMN exerted its mitigating effects through two fundamental mechanisms. On one hand, NMN conferred stability to the cell cytoskeleton, thereby supporting nuclear maturation. On the other hand, NMN enhanced mitochondrial function within oocytes, reducing the excess reactive oxygen species (ROS), restoring meiotic division abnormalities caused by TOCP, preventing oocyte DNA damage, and suppressing epigenetic changes. These findings not only enhance our understanding of the molecular basis of TOCP induced oocyte damage but also offer a promising avenue for the potential application of NMN in optimizing reproductive treatment strategies.


Subject(s)
Nicotinamide Mononucleotide , Phosphates , Tritolyl Phosphates , Female , Mice , Animals , Nicotinamide Mononucleotide/metabolism , Nicotinamide Mononucleotide/pharmacology , Phosphates/metabolism , Oocytes , Cytoskeleton , Mitochondria , Reactive Oxygen Species/metabolism , Mammals
2.
Am J Physiol Endocrinol Metab ; 319(1): E81-E90, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32396496

ABSTRACT

We have previously shown that systemic injection of erythropoietin-producing hepatocellular receptor A7 (EPHA7)-Fc raises serum luteinizing hormone (LH) levels before ovulation in female rats, indicating the induction of EPHA7 in ovulation. In this study, we aimed to identify the mechanism and hypothalamus-pituitary-ovary (HPO) axis level underlying the promotion of LH secretion by EPHA7. Using an ovariectomized (OVX) rat model, in conjunction with low-dose 17ß-estradiol (E2) treatment, we investigated the association between EPHA7-ephrin (EFN)A5 signaling and E2 negative feedback. Various rat models (OVX, E2-treated OVX, and abarelix treated) were injected with the recombinant EPHA7-Fc protein through the caudal vein to investigate the molecular mechanism underlying the promotion of LH secretion by EPHA7. Efna5 was observed strongly expressed in the arcuate nucleus of the female rat by using RNAscope in situ hybridization. Our results indicated that E2, combined with estrogen receptor (ER)α, but not ERß, inhibited Efna5 and gonadotropin-releasing hormone 1 (Gnrh1) expressions in the hypothalamus. In addition, the systemic administration of EPHA7-Fc restrained the inhibition of Efna5 and Gnrh1 by E2, resulting in increased Efna5 and Gnrh1 expressions in the hypothalamus as well as increased serum LH levels. Collectively, our findings demonstrated the involvement of EPHA7-EFNA5 signaling in the regulation of LH and the E2 negative feedback pathway in the hypothalamus, highlighting the functional role of EPHA7 in female reproduction.


Subject(s)
Ephrin-A5/metabolism , Estrogen Receptor alpha/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Luteinizing Hormone/metabolism , Protein Precursors/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Ephrin-A5/drug effects , Ephrin-A5/genetics , Estradiol/pharmacology , Estrogen Receptor beta/metabolism , Estrogens/pharmacology , Feedback, Physiological/drug effects , Feedback, Physiological/physiology , Female , Gonadotropin-Releasing Hormone/drug effects , Hormone Antagonists/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Hypothalamus/drug effects , Luteinizing Hormone/drug effects , Oligopeptides/pharmacology , Ovariectomy , Ovary/drug effects , Ovary/metabolism , Protein Precursors/drug effects , Rats , Receptor, EphA7/genetics , Receptor, EphA7/metabolism , Receptor, EphA7/pharmacology , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL