Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Pharmacol ; 15: 1374377, 2024.
Article in English | MEDLINE | ID: mdl-38576485

ABSTRACT

Background: IgA nephropathy (IgAN), a condition posing a significant threat to public health, currently lacks a specific treatment protocol. Research has underscored the potential benefits of traditional Chinese medicine (TCM) for treating IgAN. Nevertheless, the effectiveness of various intervention strategies, such as combining TCM with angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs), lacks a comprehensive systematic comparison. Therefore, this study aimed to conduct a network meta-analysis to assess the clinical efficacy of ACEIs, ARBs, TCM, and their combinations in treating IgAN to offer novel insights and approaches for the clinical management of IgAN. Methods: A systematic review conducted until November 2023 included relevant literature from databases such as PubMed, Embase, Cochrane, Web of Science, Scopus, CNKI, and Wanfang. Two independent researchers screened and assessed the data for quality. Network and traditional meta-analyses were performed using Stata 18.0 and RevMan 5.3 software, respectively. Outcome measures included 24-h urinary protein quantification (24 hpro), estimated glomerular filtration rate (eGFR), serum creatinine (Scr), blood urea nitrogen (BUN), and adverse event incidence rates (ADRs). Forest plots, cumulative ranking probability curves (SUCRA), and funnel plots generated using Stata 18.0 facilitated a comprehensive analysis of intervention strategies' efficacy and safety. Results: This study included 72 randomized controlled trials, seven interventions, and 7,030 patients. Comparative analysis revealed that ACEI + TCM, ARB + TCM combination therapy, and TCM monotherapy significantly reduced the levels of 24 hpro, eGFR, Scr, and BUN compared to other treatment modalities (p < 0.05). TCM monotherapy demonstrated the most favorable efficacy in reducing eGFR levels (SUCRAs: 78%), whereas the combination of ARB + TCM reduced Scr, 24 hpro, and BUN levels (SUCRAs: 85.7%, 95.2%, and 87.6%, respectively), suggesting that ARB + TCM may represent the optimal intervention strategy. No statistically significant differences were observed among the various treatment strategies in terms of ADR (p > 0.05). Conclusion: The combination of ACEI or ARB with TCM demonstrated superior efficacy compared to ACEI/ARB monotherapy in the treatment of IgAN without any significant ADRs. Therefore, combination therapies can be used to enhance therapeutic outcomes based on individual patient circumstances, highlighting the use of TCM as a widely applicable approach in clinical practice. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023476674.

2.
Phytomedicine ; 128: 155371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518649

ABSTRACT

BACKGROUND: Irinotecan (CPT-11) is used as chemotherapeutic drug for treatment of colorectal cancer. However, without satisfactory treatments, its gastrointestinal toxicities such as diarrhea and intestinal inflammation severely restrained its clinical application. Roots of Aucklandia lappa Decne. are used as traditional Chinese medicine to relieve gastrointestinal dysfunction and dehydrocostus lactone (DHL) is one of its main active components. Nevertheless, the efficacy and mechanism of DHL against intestinal mucositis remains unclear. PURPOSE: The present study aimed to investigate the protective effects of DHL on CPT-11-induced intestinal mucositis and its underlying mechanisms. METHODS: The protective effect of DHL was investigated in CPT-11-induced mice and lipopolysaccharide (LPS)+CPT-11 induced THP-1 macrophages. Body weight, diarrhea score, survival rate, colon length, and histopathological changes in mice colon and jejunum were analyzed to evaluate the protective effect of DHL in vivo. And DHL on reducing inflammatory response and regulating TLR4/NF-κB/NLRP3 pathway in vivo and in vitro were explored. Moreover, DHL on the interaction between TLR4 and MD2 was investigated. And silencing TLR4 targeted by siRNA was performed to validate the mechanisms of DHL on regulating the inflammation. RESULTS: DHL prevented CPT-11-induced intestinal damage, represented by reducing weight loss, diarrhea score, mortality rate and the shortening of the colon. Histological analysis confirmed that DHL prevented intestinal epithelial injury and improved the intestinal barrier function in CPT-11 induced mice. Besides, DHL significantly downregulated the level of inflammatory cytokines by inhibiting TLR4/NF-κB/NLRP3 signaling pathway in CPT-11-induced mice and LPS+CPT-11-induced THP-1 macrophages. In addition, DHL blocked TLR4/MD2 complex formation. Molecular docking combined with SIP and DARTS assay showed that DHL could bind to TLR4/MD2 and occludes the hydrophobic pocket of MD2. Furthermore, Silencing TLR4 abrogated the effect of DHL on LPS+CPT-11 induced inflammatory response in THP-1 macrophages. Additionally, DHL ameliorate the CPT-11-induced intestinal mucositis without affecting the anti-tumor efficacy of CPT-11 in the tumor xenograft mice. CONCLUSION: This study found that DHL exhibited the anti-inflammatory effects in CPT-11-induced intestinal mucositis by inhibiting the formation of TLR4/MD2 complex and then regulation of NF-κB/NLRP3 signaling pathway. DHL is potentially served as a novel strategy of combined medication with CPT-11.


Subject(s)
Irinotecan , Lactones , Lymphocyte Antigen 96 , Mucositis , Sesquiterpenes , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mice , Lactones/pharmacology , Humans , Lymphocyte Antigen 96/metabolism , Male , NF-kappa B/metabolism , Signal Transduction/drug effects , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , THP-1 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred C57BL , Mice, Inbred BALB C , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
3.
Research (Wash D C) ; 6: 0276, 2023.
Article in English | MEDLINE | ID: mdl-38034083

ABSTRACT

Non-alcoholic fatty liver disease, especially nonalcoholic steatohepatitis (NASH), is a leading cause of cirrhosis and liver cancer worldwide; nevertheless, there are no Food and Drug Administration-approved drugs for treating NASH until now. Peroxisome proliferator-activated receptor alpha (PPARα) is an interesting therapeutic target for treating metabolic disorders in the clinic, including NASH. Herpetrione, a natural lignan compound isolated from Tibetan medicine Herpetospermum caudigerum, exerts various hepatoprotective effects, but its efficacy and molecular mechanism in treating NASH have not yet been elucidated. Here, we discovered that herpetrione lessened lipid accumulation and inflammation in hepatocytes stimulated with oleic acid and lipopolysaccharide, and effectively alleviated NASH caused by a high-fat diet or methionine-choline-deficient diet by regulating glucolipid metabolism, insulin resistance, and inflammation. Mechanistically, RNA-sequencing analyses further showed that herpetrione activated PPAR signaling, which was validated by protein expression. Furthermore, the analysis of molecular interactions illustrated that herpetrione bound directly to the PPARα protein, with binding sites extending to the Arm III domain. PPARα deficiency also abrogated the protective effects of herpetrione against NASH, suggesting that herpetrione protects against hepatic steatosis and inflammation by activation of PPARα signaling, thereby alleviating NASH. Our findings shed light on the efficacy of a natural product for treating NASH, as well as the broader prospects for NASH treatment by targeting PPARα.

4.
J Ethnopharmacol ; 317: 116850, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37385573

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lamiophlomis rotata (Benth.) Kudo (LR, Lamiaceae) is a traditional Tibetan medicinal material in China. Tibetan medicine classic and research report suggested that LR could be used to cure rheumatoid arthritis (RA). However, the anti-RA active ingredients and pharmacological mechanisms of LR have not been elucidated. AIM OF THE STUDY: To explore the mechanisms and key active ingredients of total flavonoids from LR (TFLR) against RA. MATERIALS AND METHODS: First, the mechanisms of TFLR against RA were investigated on collagen-induced arthritis (CIA) rat model by analyzing paw appearance, paw swelling, arthritis score, spleen index, thymus index, inflammatory cytokine (TNF-α, IL-1ß, IL-6 and IL-17) levels in serum, histopathology of ankle joint and synovium from knee joint (hematoxylin-eosin, safranin O-fast green and DAB-TUNEL staining), and apoptosis-related protein (PI3K, Akt1, p-Akt, Bad, p-Bad, Bcl-xL and Bcl-2) levels in the synovium of ankle joints (Western blot). Then, the crucially active ingredients of TFLR against RA were explored by network pharmacology, ingredient analysis, in vitro metabolism and TNF-α-induced human RA synovial fibroblast MH7A proliferation assays. Network pharmacology was applied to predict the key active ingredients of TFLR against RA. The ingredient analysis and in vitro metabolism of TFLR were performed on HPLC, and MH7A proliferation assay were applied to evaluate the predicted results of network pharmacology. RESULTS: TFLR shown excellently anti-RA effect by reducing paw swelling, arthritis score, spleen index, thymus index and inflammatory cytokine (IL-1ß, IL-6 and IL-17) levels, and improving the histopathological changes of ankle joint and synovium from knee joint in CIA rats. Results of Western blot indicated that TFLR reversed the changes of PI3K, p-Akt, p-Bad, Bcl-xL and Bcl-2 levels in the ankle joint synovium of CIA rats. Results of network pharmacology exhibited that luteolin was identified as the pivotal active ingredient of TFLR against RA. The ingredient analysis of TFLR indicated that the main ingredient in TFLR was luteoloside. The in vitro metabolism study of TFLR suggested that luteoloside could be converted to luteolin in artificial gastric juice and intestinal juice. Results of MH7A proliferation assay showed that there was no significant difference between TFLR and equal luteoloside on the viability of MH7A cells, indicating that luteoloside was the key active ingredient of TFLR against RA. Additionally, the luteolin (same mol as luteoloside) showed better inhibitory effect on the viability of MH7A cells than luteoloside. CONCLUSION: TFLR showed anti-RA effect, and the mechanism was related to promoting synovial cell apoptosis mediated by PI3K/Akt/Bad pathway. Meanwhile, this work indicated that luteoloside was the key active ingredient of TFLR against RA. This work lays a foundation for providing TFLR product with clear mechanism and stable quality to treat RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Lamiaceae , Rats , Humans , Animals , Proto-Oncogene Proteins c-akt/metabolism , Interleukin-17 , Luteolin/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-6 , Network Pharmacology , Phosphatidylinositol 3-Kinases , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cytokines/metabolism , Proto-Oncogene Proteins c-bcl-2
5.
Comput Math Methods Med ; 2023: 9150324, 2023.
Article in English | MEDLINE | ID: mdl-36820318

ABSTRACT

Objective: To explore the potential molecular mechanism of Pueraria Lobata Radix (RP) and Salviae Miltiorrhizae Radix (RS) in the treatment of type 2 diabetes mellitus (T2DM) based on network pharmacology and molecular docking. Methods: The chemical constituents and core targets of RP and RS were searched by Traditional Chinese Medicine System Pharmacology (TCMSP); target genes related to T2DM were obtained through GeneCards database, component target network diagram was constructed, intersection genes of active compounds and T2DM were synthesized, protein-protein interaction (PPI) relationship was obtained, and core targets were screened by using Cytoscape 3.7.2. Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed utilizing R studio 4.0.4 according to David database. Based on molecular docking, the screened active components of RP and RS were verified by molecular docking with the core target using Discovery Studio 2019. Results: There were totally 92 components and 29 corresponding targets in the component target network of RP and RS drug pair, of which 6 were the core targets of RP and RS in the treatment of T2DM. Molecular docking results showed that the active compounds of puerarin, formononetin, tanshinone iia, and luteolin had better binding activity with AKT1, VEGFA, NOS3, PPARG, MMP9, and VCAM1, respectively. Among them, puerarin showed significant effects in activating NOS3 pathway and luteolin exhibited significant effects in activating MMP9 pathway, respectively. The main biological processes mainly including xenobiotic stimulus, response to peptide, gland development, response to radiation, cellular response to chemical stress, response to oxygen levels, and the main signal pathways include response to xenobiotic stimulus, cellular response to chemical stress, response to peptide, gland development, and response to oxygen levels. Conclusion: Network pharmacology is an effective tool to explain the action mechanism of Traditional Chinese Medicine (TCM) from the overall perspective. RP and RS pair could alleviate T2DM via the molecular mechanism predicted by the network pharmacology, which provided new ideas and further research on the molecular mechanism of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Pueraria , Humans , Luteolin , Matrix Metalloproteinase 9 , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Xenobiotics , Salvia/chemistry
6.
Antioxidants (Basel) ; 11(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36552516

ABSTRACT

Acute kidney injury (AKI) is described as the abrupt decrease in kidney function always accompanied by inflammation. The roots of Oxybaphus himalaicus Edgew. have long been used in Tibetan folk medicine for the treatment of nephritis. Nevertheless, modern pharmacological studies, especially about the underlying mechanism of O. himalaicus medications, are still lacking. Here, in lipopolysaccharide (LPS)-induced RAW264.7 macrophages, the O. himalaicus extract (OE) showed significant anti-inflammatory activity with the dose dependently reducing the LPS-stimulated release of nitric oxide and the mRNA level and protein expression of inflammatory cytokines and reversed the activation of nuclear factor kappa B (NF-κB). Co-immunoprecipitation assay indicated that OE inhibited Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2) complex formation and further suppressed both myeloid differentiation factor 88 (MyD88)-dependent and TIR-domain-containing adapter-inducing interferon-ß (TRIF)-dependent cascades activation. In addition, OE could restrain NADPH oxidase 2 (NOX2) endocytosis by blocking TLR4/MD2 complex formation to prevent reactive oxygen species production. In LPS-induced AKI mice, OE treatment mitigated renal injury and inflammatory infiltration by inhibiting TLR4/MD2 complex formation. UPLC-MS/MS analysis tentatively identified 41 components in OE. Our results indicated that OE presented significant anti-inflammatory activity by inhibiting TLR4/MD2 complex formation, which alleviated LPS-induced AKI in mice.

7.
Phytother Res ; 36(3): 1268-1283, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35084790

ABSTRACT

Costunolide (cos) derived from the roots of Dolomiaea souliei (Franch.), which belongs to the Dolomiaea genus in the family Compositae, exert the anti-inebriation effect mainly by inhibiting the absorption of alcohol in the gastrointestinal tract. However, the protective effect of cos against alcohol-induced liver injury (ALI) remains obscure. The present study was aimed to evaluate the hepatoprotective effects of cos (silymarin was used as positive control) against ALI and its potential mechanisms. MTT was used to examine the effect of cos on the cell viability of L-02 cells. Plasma was separated from blood that used to test the levels of TNF-α, IL-6 and IL-12, and LPS while serum separated from blood which used to detect the level of ALT and AST. Liver tissues were obtained for histopathological examination and western blot analysis. Fresh mice feces samples were collected for the detection of bacterial composition. Cos exhibited protective effect against alcoholic-induced liver injury by regulating gut microbiota capacities (higher relative abundance of Firmicutes and Actinobacteria while lower in Bacteroidetes and Proteobacteria), adjusting oxidative stress (reduced the activities of MDA and ROS while promoted SOD, GSH and GSH-PX in L-02 cells) and attenuating inflammation (decreased the levels of ALT, AST, LPS, IL-6, IL-12 and TNF-α) via LPS-TLR4-NF-κB p65 signaling pathway, which might be an active therapeutic agent for treatment of ALI.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Gastrointestinal Microbiome , Animals , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Liver , Mice , NF-kappa B/metabolism , Oxidative Stress , Sesquiterpenes
8.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6423-6430, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36604888

ABSTRACT

The present study analyzed the chemical constituents in dried roots of Dolomiaea souliei. Chromatographic methods, such as normal-phase, and reversed-phase column chromatography, TLC, and preparative HPLC, were applied to separate and purify the petroleum ether extract of D. souliei. The structures of the purified constituents were identified by multiple spectroscopic methods including 1 D NMR, 2 D NMR, IR, UV, and HR-ESI-MS. Fourteen triterpenoids were obtained and identified as bauer-8-ene-3,11-dione-7α-ol(1), bauer-8-ene-3-one-7α,11α-diol(2), 3-oxo-11α-hydroxy-urs-12-ene(3), 3-oxour-12-ene-1ß,11α-diol(4), 3ß,11α-dihydroxy-urs-12-ene(5), taraxast-20-ene-3ß,30-diol(6), 28-hydroxy-3-oxo-12-ursene(7), 3ß-hydroxytaraxast-20-ene-30-aldehyde(8), urs-12-ene-2α,3ß,28-triol(9), 20-hydroxylupan-3-one(10), monogynol A(11), obtusalin(12), 3-oxo, 11α-hydroxy-olean-12-ene(13), and isocabralealactone(14). Among them, compounds 1 and 2 were new compounds. Compounds 4-10, 12, and 14 were isolated from this genus for the first time. Compounds 3 and 11 were obtained from D. souliei for the first time.


Subject(s)
Asteraceae , Triterpenes , Triterpenes/chemistry , Magnetic Resonance Spectroscopy , Solvents , Molecular Structure
9.
Phytomedicine ; 87: 153588, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34091148

ABSTRACT

BACKGROUND: Cholestasis is characterized by accumulation of bile components in liver and systemic circulation. Restoration of bile acid homeostasis via activating farnesoid x receptor (FXR) is a promising strategy for the treatment of cholestasis. FXR-SHP (small heterodimer partner) axis plays an important role in maintaining bile acid homeostasis. PURPOSE: To investigate the anti-cholestasis effect of Dolomiaea souliei (Franch.) C.Shih (D. souliei) and clarify its underlying mechanism against α-naphthylisothiocyanate (ANIT) induced acute intrahepatic cholestasis. METHODS: ANIT-induced Sprague-Dawley rats were employed to investigate the anti-cholestasis effect of D. souliei ethyl acetate extract (DSE). Ursodeoxycholic acid (UDCA) was used as positive control. Bile flow and blood biochemical parameters were measured. Liver histopathological examination was conducted via hematoxylin-eosin staining. Western blot analysis was carried out to evaluate the protein levels related to bile acids metabolism and inflammation. The interactions between FXR and costunolide or dehydrocostus lactone, were conducted by molecular docking experiments. The effect of costunolide and dehydrocostus lactone on aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and FXR expression were also evaluated using guggulsterone-induced L02 cells. RESULTS: DSE could promote bile excretions and protect against ANIT-induced liver damage in cholestasis rats. Protein levels of FXR, SHP, Na+/taurocholate cotransporter (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) were increased and the expressions of cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) were decreased by DSE. Meanwhile, the anti-inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) were also significantly increased, and the pro-inflammatory factor, interleukin-10 (IL-10), was significantly decreased in rats of DSE groups. Molecular docking revealed that costunolide and dehydrocostus lactone could be well docked into the FXR protein molecule, and hydrophobic interactions played the main function. Costunolide could reverse the increased AST and ALT levels and increase the FXR expression in guggulsterone-induced L02 cells. CONCLUSION: DSE had an anti-cholestasis effect by activating FXR-SHP axis, inhibiting synthesis of bile acid, and increasing bile secretion, together with inflammatory response and improving liver injury. Costunolide may be the main active component. This study provided a potential therapeutic mechanism for D. souliei as an anti-cholestasis medicine in the treatment of cholestasis liver diseases.


Subject(s)
Asteraceae/chemistry , Bile Acids and Salts/metabolism , Cholestasis, Intrahepatic/drug therapy , Plant Extracts/pharmacology , 1-Naphthylisothiocyanate/toxicity , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Acetates/chemistry , Alanine Transaminase/metabolism , Animals , Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/metabolism , Cholestasis, Intrahepatic/pathology , Lactones/chemistry , Male , Molecular Docking Simulation , Plant Extracts/chemistry , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Sesquiterpenes/chemistry
10.
BMC Genomics ; 22(1): 353, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34000984

ABSTRACT

BACKGROUND: Polygonum cuspidatum Sieb. et Zucc. is a well-known medicinal plant whose pharmacological effects derive mainly from its stilbenes, anthraquinones, and flavonoids. These compounds accumulate differentially in the root, stem, and leaf; however, the molecular basis of such tissue-specific accumulation remains poorly understood. Because tissue-specific accumulation of compounds is usually associated with tissue-specific expression of the related biosynthetic enzyme genes and regulators, we aimed to clarify and compare the transcripts expressed in different tissues of P. cuspidatum in this study. RESULTS: High-throughput RNA sequencing was performed using three different tissues (the leaf, stem, and root) of P. cuspidatum. In total, 80,981 unigenes were obtained, of which 40,729 were annotated, and 21,235 differentially expressed genes were identified. Fifty-four candidate synthetase genes and 12 transcription factors associated with stilbene, flavonoid, and anthraquinone biosynthetic pathways were identified, and their expression levels in the three different tissues were analyzed. Phylogenetic analysis of polyketide synthase gene families revealed two novel CHS genes in P. cuspidatum. Most phenylpropanoid pathway genes were predominantly expressed in the root and stem, while methylerythritol 4-phosphate and isochorismate pathways for anthraquinone biosynthesis were dominant in the leaf. The expression patterns of synthase genes were almost in accordance with metabolite profiling in different tissues of P. cuspidatum as measured by high-performance liquid chromatography or ultraviolet spectrophotometry. All predicted transcription factors associated with regulation of the phenylpropanoid pathway were expressed at lower levels in the stem than in the leaf and root, but no consistent trend in their expression was observed between the leaf and the root. CONCLUSIONS: The molecular knowledge of key genes involved in the biosynthesis of P. cuspidatum stilbenes, flavonoids, and anthraquinones is poor. This study offers some novel insights into the biosynthetic regulation of bioactive compounds in different P. cuspidatum tissues and provides valuable resources for the potential metabolic engineering of this important medicinal plant.


Subject(s)
Fallopia japonica , Plants, Medicinal , Stilbenes , Anthraquinones , Fallopia japonica/genetics , Flavonoids , Gene Expression Profiling , Gene Expression Regulation, Plant , Humans , Phylogeny , Transcriptome
11.
Phytomedicine ; 85: 153548, 2021 May.
Article in English | MEDLINE | ID: mdl-33831690

ABSTRACT

BACKGROUND: Pterocephalus hookeri (C. B. Clarke) Höeck, a Tibetan medicine widely used for treatment of rheumatoid arthritis, was recorded in Chinese Pharmacopoeia (2020 version) with slight toxicity. The liver injury was observed in mice with administration of n-butanol extract (BUE) in our previously study. However, the toxic components and the mechanism were still unrevealed. PURPOSE: The present study was aimed to isolate and structural elucidate of the toxic compound pterocephin A (PA), as well as evaluate its liver toxicity and investigate its mechanism. METHODS: PA was isolated from the BUE of P. hookeri. Its structure was determined by analysis of HRMS, NMR and ECD data. L-02 cellular viability, LDH, ALT, AST, ROS, intracellular Ca2+ and the fluidity of cell membrane were assessed by multifunctional microplate reader. The PI staining, cell membrane permeability assessment, and mitochondrial fluorescence staining analysis were determined through the fluorescence microscope. Liver samples for mice were assessed by pathological and immunohistochemistry analysis. Expression levels of indicated proteins were measured by western blotting assays. RESULTS: PA was determined as a previously undescribed oleanolane-type triterpenoid saponin. In vitro study revealed PA significantly induced hepatotoxicity by inhibition of L-02 cell growth, abnormally elevation of ALT and AST. Mechanically, PA induced the damage of cell membrane, fragmentation of mitochondria, and subsequently increase of intracellular Ca2+ and ROS levels, which trigged by necroptosis with the activation of RIP1 and NF-κB signaling pathways. In vivo study confirmed PA could induce liver injury in mice with observation of the body weight loss, increasing of serum ALT and AST, and the histopathological changes in liver tissues. CONCLUSION: Our present study indicated that PA was an undescribed toxic constituent in P. hookeri to induce liver injury in mice by activation of necroptosis and inflammation. And the findings are of great significance for the clinical use safely of this herb.


Subject(s)
Caprifoliaceae/chemistry , Chemical and Drug Induced Liver Injury, Chronic/pathology , Necroptosis , Saponins/adverse effects , Triterpenes/adverse effects , Animals , Cell Line , Female , Humans , Inflammation , Liver/drug effects , Liver/metabolism , Male , Medicine, Tibetan Traditional , Mice , Molecular Structure , NF-kappa B/metabolism , Phytochemicals/adverse effects , Plant Extracts/adverse effects
12.
Fitoterapia ; 151: 104886, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33757847

ABSTRACT

Two undescribed sesamin-type sesquilignans ptehoosines A (1) and B (2), together with 4 known lignans (3-6), were isolated from Pterocephalus hookeri (C.B. Clarke) Höeck which was widely used as traditional Tibetan medicine for treatment of rheumatoid arthritis. Their structures were determined by HR-ESI-MS, NMR analysis and CD experiment. The in vitro antiangiogenic effect of all isolated compounds against human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8 assay. Among them, compound 1 exhibited significant proliferative inhibition on HUVECs with IC50 value of 32.82 ± 0.99 µM. Further in vitro study indicated 1 could arrest cell cycle at G0/G1 phase and reduce the migration of HUVECs. In vivo experiment exhibited 1 could inhibit tail vessels plexus in zebrafish. The above finding suggested that 1 was a promising lead compound against RA by inhibiting of angiogenesis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Caprifoliaceae/chemistry , Dioxoles/pharmacology , Lignans/pharmacology , Angiogenesis Inhibitors/isolation & purification , Animals , Cell Cycle Checkpoints , Dioxoles/isolation & purification , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Lignans/isolation & purification , Medicine, Tibetan Traditional , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Tibet , Zebrafish
13.
Eur J Clin Nutr ; 75(10): 1454-1464, 2021 10.
Article in English | MEDLINE | ID: mdl-33514873

ABSTRACT

BACKGROUND: Though tea drinking years and menopause stages have been indicated to be related with bone mineral density (BMD), most human studies have not considered the impact of tea drinking beginning time. Whether drinking tea before or after menopause plays a role in BMD is still unclear. This study aims to analyze whether drinking tea before or after menopause influences BMD in Chinese postmenopausal women. METHODS: A total of 1377 postmenopausal women under 80 years were enrolled from the baseline survey of the Lanxi Cohort Study. Participants were initially categorized into non-tea drinking, tea drinking beginning after menopause and tea drinking beginning before menopause groups. Tea drinking groups were subdivided according to tea drinking frequency, concentration and type. Multiple linear regression models were applied to evaluate associations between tea drinking before or after menopause and BMD and the impacts of tea drinking frequency, concentration and type on their associations in analyses including all participants. Interactions of tea drinking frequency, concentration and type with drinking tea before or after menopause were further analyzed. RESULTS: After adjusting for confounding factors, women who began drinking tea before menopause had significantly higher total and regional BMD than non-tea drinking participants and participants who began drinking tea after menopause. Differences in spine BMD were more significant among those who drank tea ≥four times per week. In addition, significant associations between tea drinking and BMD were found among participants who began drinking tea before menopause in both models, irrespective of the concentration and type of tea. No significant associations were found in subgroups of participants who began drinking tea after menopause in either model. CONCLUSIONS: The results indicate that drinking tea before menopause is related to higher BMD in Chinese postmenopausal women. The relationship is independent of tea drinking concentration and type.


Subject(s)
Bone Density , Postmenopause , Cohort Studies , Female , Humans , Menopause , Tea
14.
Phytomedicine ; 80: 153378, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33113499

ABSTRACT

BACKGROUND: In our previous study, we demonstrated the hepatoprotective effect of Herpetospermum pedunculosum in cholestatic rats. A bioassay-guided study also led to the identification and isolation of a lignan, dihydrodiconiferyl alcohol (DA) from the seeds of H. pedunculosum. PURPOSE: To investigate whether DA could alleviate cholestasis and determine the mechanisms underlying such action. METHODS: Male Sprague-Dawley (SD) rats were administered with DA (10, 20 or 40 mg/kg) intragastrically once daily for 7 days prior to treatment with α-naphthylisothiocyanate (ANIT) (60 mg/kg). We then evaluated the levels of a range of serum indicators, determined bile flow, and carried out histopathological analyses. Western blotting was then used to investigate the levels of inflammatory mediators and the Farnesoid X Receptor (FXR), proteins involved in the downstream biosynthesis of bile acids, and a range of transport proteins. Molecular docking was used to simulate the interaction between DA and FXR. Cell viability of human hepatocytes (L-02) cells was determined by MTT. Then, we treated guggulsterone-inhibited L-02 cells, Si-FXR L-02 cells, and FXR-overexpression cells with the FXR agonist GW4064 (6 µM) or DA (25, 50 and 100 µM) for 24 h before detecting gene and protein expression by RT-PCR and western blotting, respectively. RESULTS: DA significantly attenuated ANIT-induced cholestasis in SD rats by reducing liver function indicators in the serum, increasing bile flow, improving the recovery of histopathological injuries in the liver, and by alleviating pro-inflammatory cytokines in the liver. DA also increased the expression levels of FXR and altered the levels of downstream proteins in the liver tissues, thus indicating that DA might alleviate cholestasis by regulating the FXR. Molecular docking simulations predicted that DA was as an agonist of FXR. In vitro mechanical studies further showed that DA increased the mRNA and protein expression levels of FXR, Small Heterodimer Partner 1/2, Bile Salt Export Pump, Multidrug Resistance-associated Protein 2, and Na+/taurocholate Co-transporting Polypeptide, in both guggulsterone-inhibited and Si-FXR L-02 cells. Moreover, DA enhanced the mRNA and protein expression of FXR, and its downstream genes and proteins, in L-02 cells containing an FXR-overexpression plasmid. CONCLUSION: DA may represent an effective agonist for FXR has significant therapeutic potential for the treatment of cholestatic liver injury.


Subject(s)
Cholestasis, Intrahepatic/drug therapy , Phenols/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , 1-Naphthylisothiocyanate/toxicity , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Animals , Bile/metabolism , Bile Acids and Salts/metabolism , Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/metabolism , Cholestasis, Intrahepatic/pathology , Cucurbitaceae/chemistry , Hepatocytes/drug effects , Humans , Isoxazoles/pharmacology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Molecular Docking Simulation , Phenols/chemistry , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics
15.
J Ethnopharmacol ; 261: 113079, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32526337

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kuanxiong aerosol has been reported to be an effective and safe clinical treatment for angina pectoris (AP). AIM OF THE STUDY: To explore the potential pharmacological mechanism of Kuanxiong aerosol by combined methods of network pharmacology prediction and experimental verification. MATERIALS AND METHODS: Networks of Kuanxiong aerosol-associated targets and AP-related genes were constructed through STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of Kuanxiong aerosol were identified using Cytoscape and Database for Annotation, Visualization and Integrated Discovery (DAVID). To explore the mechanism of action of Kuanxiong aerosol, its in vitro effects on myocardial hypoxia, inflammatory cytokines, and oxidative injury, and its in vivo pharmacological effects on myocardial ischemia and cardiac fibrosis were studied in rat models. RESULTS: Network pharmacology analysis revealed that the potential targets mainly include the Fas ligand (FASLG), interleukin 4 (IL4), and catalase (CAT), which mediated the processes of apoptosis, and cellular responses to hypoxia, lipopolysaccharide (LPS), reactive oxygen species (ROS), and mechanical stimulus. Multiple pathways, such as the hypoxia-inducible factor 1 (HIF1) and tumor necrosis factor (TNF) pathways were found to be closely related to the pharmacological protective mechanism of Kuanxiong aerosol against AP. In addition, Kuanxiong aerosol suppressed the hypoxia, LPS, and hydrogen peroxide (H2O2)-induced injuries of H9c2 cardiomyocytes through the regulation of HIF1A, suppressed expression of IL6 and TNF, and antioxidant property. In the rat model of myocardial ischemia, Kuanxiong aerosol was found to lower the creatine kinase (CK), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase (LDH) levels, without altering the hemodynamic function. Kuanxiong aerosol was capable of attenuating cardiac fibrosis and improving cardiac function in a cardiac fibrosis rat model. CONCLUSIONS: This study revealed that the pharmacological mechanisms of Kuanxiong aerosol for AP therapy were related to anti-myocardial ischemia, anti-inflammation, and anti-oxidation via a non-hemodynamic manner, indicating that Kuanxiong aerosol is a preferable drug clinically for AP treatment due to its both preventive and protective effects.


Subject(s)
Angina Pectoris/drug therapy , Cardiovascular Agents/pharmacology , Myocytes, Cardiac/drug effects , Oils, Volatile/pharmacology , Systems Biology , Administration, Sublingual , Aerosols , Angina Pectoris/genetics , Angina Pectoris/metabolism , Angina Pectoris/pathology , Animals , Cardiovascular Agents/administration & dosage , Cell Line , Databases, Genetic , Disease Models, Animal , Drug Combinations , Gene Expression Regulation , Gene Regulatory Networks , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oils, Volatile/administration & dosage , Protein Interaction Maps , Rats, Wistar , Signal Transduction
16.
Phytomedicine ; 53: 263-273, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30668406

ABSTRACT

BACKGROUND: Sedum sarmentosum, which is recorded in Chinese Pharmacopoeia, has been applied clinically to treat liver and gallbladder diseases. PURPOSE: This study aimed to explore the hepatoprotective effect of S. sarmentosum less polar extract (SSE) against ANIT-induced liver injury in rats, and the protective activity and mechanism of one major constituent isolated from this extract on D-GalN-induced human hepatic QSG7701 cell damage. METHODS: Rats were divided into groups and then administrated intragastrically with SSE at doses of 100, 200 and 400 mg/kg for 7 days. They were modeled in the experiments with ANIT (70 mg/kg) to induce liver injury after the sixth day administration. The levels of serum biochemical markers ALT, AST, ALP, GGT/γ-GT, DBiL, TBiL, ALB, TP, and bile flow rate, as well as the histopathology of the liver tissue were used as indices of liver damage and measured. The inflammatory response and oxidative stress were thought to be key contributors to ANIT-induced liver injury in rats. Therefore, the inflammatory mediators (TNF-α, IFN-γ, IL-4) and oxidative stress (ROS, SOD, GSH-PX) were measured in the serum and liver homogenates, respectively. Next, phytochemical research was performed to produce the main component, and the isolated compound was evaluated for its hepatoprotective activity against QSG7701 cell injured by D-GalN through the measurement of cell viabilities, ALT, AST, IL-1ß, TNF-α, IL-6, ROS, GSH-PX and SOD productions. Furthermore, the protein expression of the Nrf2 and NF-κB pathways were analyzed by western blotting. RESULTS: SSE had an obvious effect on the decreases of ALT, AST, ALP, GGT/γ-GT, DBiL and TBiL levels, the increases of ALB and TP levels in serum, and the ANIT-induced deceleration in bile flow for liver injury. Meanwhile, SSE pretreatment alleviated ANIT-induced liver pathological injuries exhibited by HE stain of the liver. Moreover, SSE significantly suppressed levels of pro-inflammatory cytokines TNF-α and IFN-γ, and elevated level of anti-inflammatory cytokine IL-4 in serum. SSE also attenuated oxidative stress by reducing ROS level and by enhancing antioxidative enzymes (SOD and GSH-PX) activities after ANIT administration in liver tissue. Further, the major compound shown in HPLC was isolated from SSE. Its structure was identified by the spectroscopic data analysis and comparison with literature values. The principal constituent had potent protective effect on D-GalN-induced QSG7701 cells damage in a dose dependent manner with survival rates of 58.2% and 69.5% at 10 µM and 20 µM, respectively. Its cytoprotective effect was associated with the reduction of ALT, AST, IL-1ß, TNF-α, IL-6 and ROS levels, and the elevation of GSH-PX and SOD productions in QSG7701 cells induced by D-GalN. Western blotting showed that this compound enhanced the expression of Nrf2, HO1, NQO1 and GCLC, and inhibited D-GalN-induced IκBα and NF-κB p65 phosphorylation. CONCLUSIONS: Current study showed that SSE treatment exerted a protective effect on ANIT-induced liver injury. The main compound δ-amyrone isolated from the extract was characterized as the effective component with hepatoprotective activity by promoting Nrf2 antioxidant defense and suppressing NF-κB inflammatory response.


Subject(s)
Liver/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Sedum/chemistry , Triterpenes/pharmacology , 1-Naphthylisothiocyanate/toxicity , Animals , Antioxidants/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Liver/metabolism , Liver/pathology , Male , NF-E2-Related Factor 2/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Protective Agents/chemistry , Rats, Sprague-Dawley , Triterpenes/isolation & purification
17.
Zhongguo Zhong Yao Za Zhi ; 42(16): 3143-3145, 2017 Aug.
Article in Chinese | MEDLINE | ID: mdl-29171233

ABSTRACT

A new napthalenone, rumexone A (1), was isolated from the roots of Rumex nepalensis. The structure of 1 was elucidated by extensive spectroscopic analyses, including 1D and 2D NMR spectra and MS data. Its cytotoxic effect was evaluated using four clinically relevant human cancer cell lines, gastric carcinoma SGC7901, breast carcinoma MDA-MB-231, lung carcinoma A549, and hepatocellular carcinoma HepG2.


Subject(s)
Naphthalenes/isolation & purification , Plant Roots/chemistry , Rumex/chemistry , Cell Line, Tumor , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Naphthalenes/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
18.
Nat Prod Res ; 31(16): 1855-1860, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27871187

ABSTRACT

One new triterpenoid (1) and 13 known compounds (2-14) were isolated from Schisandra pubescens stems. The structure of the new compound was established on the basis of 1D/2D NMR and HRESIMS spectroscopic analyses. The isolated compounds were evaluated for their hepatoprotective activities against D-GalN-induced cell injury in QSG7701 cells. Compounds 1, 13 and 14 at 10 µM showed hepatoprotective activities, with survival rates of 60.5, 50.4 and 48.9%, respectively.


Subject(s)
Lignans/pharmacology , Protective Agents/chemistry , Protective Agents/pharmacology , Schisandra/chemistry , Cell Line , Drug Evaluation, Preclinical/methods , Hepatocytes/drug effects , Humans , Lignans/chemistry , Lignans/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Stems/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology
19.
Fitoterapia ; 113: 91-6, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27431772

ABSTRACT

Phytochemical investigation of Abies faxoniana Rehd. led to the isolation of two pairs of new epimeric spirolactone-type triterpenoids (1/1' and 2/2') and 11 known terpenoids (3-13). Compounds 1/1' and 2/2' were isolated as epimeric mixtures due to the C-23 ketal tautomerism in their spirolactone structures. The dynamic HPLC manifested that the C-23 epimeric mixtures interconverted into each other in solution. Structure determinations were based on extensive NMR and HRESIMS spectroscopic analysis. Meanwhile, their cytotoxic activities were tested by MTT method. Compound 5 showed cytotoxicities against MCF-7 and A549 cells with IC50 values of 6.5 and 5.7µM, respectively. Compounds 1/1' had IC50 values of 10.0 and 12.3µM for Huh7 and SMMC7721 cells, respectively.


Subject(s)
Abies/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Spironolactone/chemistry , Triterpenes/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Humans , Molecular Structure , Plant Components, Aerial/chemistry , Spironolactone/isolation & purification , Triterpenes/isolation & purification
20.
Planta Med ; 82(8): 734-41, 2016 May.
Article in English | MEDLINE | ID: mdl-27220079

ABSTRACT

A phytochemical investigation on the roots of Campylotropis hirtella afforded nine new isoflavones (3-9, 12, 15), two new isoflavans (10 and 11), one new coumestan (1), and three new prenylated benzoic acid derivatives (2, 13, 14), together with twenty-four known compounds. Their structures were established by spectroscopic analysis and circular dichroism data. The isolated compounds were also evaluated for their antibacterial activities against Enterococcus faecalis, Salmonella gallinarum, Streptococcus suis, Streptococcus agalactiae, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Riemerella anatipestifer, and Vibrio alginolyticus.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Fabaceae/chemistry , Plant Extracts/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL