Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Huan Jing Ke Xue ; 44(9): 5176-5185, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699835

ABSTRACT

This study was conducted to explore the fertilization potential of the high-volume straw returning mode in cooperation with Bacillus and other functional flora on desertification soil and to analyze the changing characteristics of soil carbon, nitrogen, and phosphorus components and functional activities of flora, so as to provide a basis for efficiently improving desertification soil fertility. A randomized block experiment was conducted, setting straw not returning to field (CK) and high-volume straw returning of 6.00 kg·m-2 (ST1), 12.00 kg·m-2 (ST2), 24.00 kg·m-2+(ST3), 6.00 kg·m-2+Bacillus (SM1), 12.00 kg·m-2+Bacillus (SM2), and 24.00 kg·m-2+Bacillus (SM3). In this study, we conducted a randomized block experiment to investigate the effect of the treatment for soil microbial and nutrient contents using 16S rRNA high-throughput sequencing and soil biochemical properties analysis. Our results showed that:① the α diversity of the soil bacterial community was significantly reduced by the combination of high-volume straw returning and Bacillus application. ② The single mode of high-volume straw returning significantly enriched Proteobacteria and decreased the relative abundance of Actinobacteriota, and the effect of the combined application of Bacillus on the variability of bacterial community structure was more significant. At the genus level, the relative abundance of beneficial bacteria such as Pseudomonas, Rhodanobacter, and Bacillus increased significantly. ③ The functional prediction based on FAPROTAX found that the high-volume straw returning combined with Bacillus could significantly improve the decomposition potential of soil flora to organic substances and the transformation potential of nitrogen components. ④ Compared with that in the control, the application of Bacillus with high-volume straw returning significantly increased the contents of soil organic matter, total phosphorus, and available phosphorus by 31.20-32.75 g·kg-1, 0.11-0.18 g·kg-1, and 29.69-35.09 mg·kg-1, respectively. In conclusion, the application of Bacillus in the sand-blown area with a high-volume straw returning can notably improve the contents of soil organic matter and phosphorus components, the functional activity of bacteria, and the abundance of beneficial bacteria, which is of great significance to the rapid improvement of soil fertility in the middle- and low-yield fields in arid areas.


Subject(s)
Bacillus , Soil , Conservation of Natural Resources , RNA, Ribosomal, 16S , Bacteria/genetics , Nitrogen , Phosphorus
2.
J Chromatogr A ; 1698: 464004, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37094539

ABSTRACT

The current study proposed a novel feather fiber-supported liquid extraction (FF-SLE) method for extracting analytes from oil samples. The natural feather fibers were used as the oil support material and directly loaded in the plastic tube of a disposable syringe to construct the low-cost extraction device (∼0.5 CNY). The edible oil without any pretreatment including dilution was added directly to the extraction device, followed by the addition of the green extraction solvent of ethanol. As an example, the proposed method was applied to extract nine synthetic antioxidants from edible oils. The optimized extraction conditions for processing 0.5 g of oil were obtained when the syringe dimension was 5 mL, the extraction solvent was 0.5 mL of ethanol, the amount of feather fibers was 200 mg of duck feather fibers and the static extraction time was 10 min. The applications to seven kinds of feathers and seven kinds of edible oils all indicated the excellent oil removal efficiencies (>98.0%). Combined with high-performance liquid chromatography-ultraviolet, a quantification method was validated with satisfied linearity (R2≥0.994), accuracy (95.8-114.6%) and precision (≤8.3%) with the limits of detection ranging from 50 to 100 ng/g. The proposed FF-SLE method was simple, effective, convenient, low-cost, green and environmental-friendly for the extraction of analytes from oil samples prior to instrument analysis.


Subject(s)
Antioxidants , Animals , Antioxidants/analysis , Chromatography, High Pressure Liquid/methods , Ethanol , Feathers/chemistry , Plant Oils/analysis , Solvents
3.
Front Genet ; 10: 747, 2019.
Article in English | MEDLINE | ID: mdl-31543895

ABSTRACT

Fatty alcohols are widely used in various applications within a diverse set of industries, such as the soap and detergent industry, the personal care, and cosmetics industry, as well as the food industry. The total world production of fatty alcohols is over 2 million tons with approximately equal parts derived from fossil oil and from plant oils or animal fats. Due to the environmental impact of these production methods, there is an interest in alternative methods for fatty alcohol production via microbial fermentation using cheap renewable feedstocks. In this study, we aimed to obtain a better understanding of how fatty alcohol biosynthesis impacts the host organism, baker's yeast Saccharomyces cerevisiae or oleaginous yeast Yarrowia lipolytica. Producing and non-producing strains were compared in growth and nitrogen-depletion cultivation phases. The multi-omics analysis included physiological characterization, transcriptome analysis by RNAseq, 13Cmetabolic flux analysis, and intracellular metabolomics. Both species accumulated fatty alcohols under nitrogen-depletion conditions but not during growth. The fatty alcohol-producing Y. lipolytica strain had a higher fatty alcohol production rate than an analogous S. cerevisiae strain. Nitrogen-depletion phase was associated with lower glucose uptake rates and a decrease in the intracellular concentration of acetyl-CoA in both yeast species, as well as increased organic acid secretion rates in Y. lipolytica. Expression of the fatty alcohol-producing enzyme fatty acyl-CoA reductase alleviated the growth defect caused by deletion of hexadecenal dehydrogenase encoding genes (HFD1 and HFD4) in Y. lipolytica. RNAseq analysis showed that fatty alcohol production triggered a cell wall stress response in S. cerevisiae. RNAseq analysis also showed that both nitrogen-depletion and fatty alcohol production have substantial effects on the expression of transporter encoding genes in Y. lipolytica. In conclusion, through this multi-omics study, we uncovered some effects of fatty alcohol production on the host metabolism. This knowledge can be used as guidance for further strain improvement towards the production of fatty alcohols.

4.
Nat Commun ; 5: 3957, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24862548

ABSTRACT

Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies.


Subject(s)
Biosynthetic Pathways/genetics , Butterflies/genetics , Moths/genetics , Sex Attractants/biosynthesis , Animals , DNA, Complementary/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids/biosynthesis , Female , Genes, Insect , Male , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid , Transcription, Genetic , Wings, Animal/physiology
5.
Insect Biochem Mol Biol ; 41(9): 715-22, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21651981

ABSTRACT

The winter moth (Operophtera brumata L., Lepidoptera: Geometridae) utilizes a single hydrocarbon, 1,Z3,Z6,Z9-nonadecatetraene, as its sex pheromone. We tested the hypothesis that a fatty acid precursor, Z11,Z14,Z17,19-nonadecanoic acid, is biosynthesized from α-linolenic acid, through chain elongation by one 2-carbon unit, and subsequent methyl-terminus desaturation. Our results show that labeled α-linolenic acid is indeed incorporated into the pheromone component in vivo. A fatty-acyl-CoA desaturase gene that we found to be expressed in the abdominal epidermal tissue, the presumed site of biosynthesis for type II pheromones, was characterized and expressed heterologously in a yeast system. The transgenic yeast expressing this insect derived gene could convert Z11,Z14,Z17-eicosatrienoic acid into Z11,Z14,Z17,19-eicosatetraenoic acid. These results provide evidence that a terminal desaturation step is involved in the winter moth pheromone biosynthesis, prior to the decarboxylation.


Subject(s)
Fatty Acid Desaturases/genetics , Insect Proteins/metabolism , Moths/genetics , Sex Attractants/biosynthesis , 8,11,14-Eicosatrienoic Acid/metabolism , Amino Acid Sequence , Animals , Arachidonic Acid/metabolism , Base Sequence , Cloning, Molecular , DNA, Complementary , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Female , Gas Chromatography-Mass Spectrometry , Molecular Sequence Data , Moths/enzymology , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae , Sequence Homology , Sex Attractants/chemistry , Sweden , alpha-Linolenic Acid/metabolism
6.
Ying Yong Sheng Tai Xue Bao ; 18(2): 400-4, 2007 Feb.
Article in Chinese | MEDLINE | ID: mdl-17450747

ABSTRACT

With in vivo and in vitro Tagetes erecta roots under light and dark as test materials, this paper studied the effects of their extracts on the glutathione S-transferase and protease activities and protein content in Tetranychus viennensis. The results showed that the chloroform extract of T. erecta roots had the highest light-activated activity, followed by water extract, and methanol extract. After treated with chloroform extract, the glutathione S-transferase and protease activities in T. viennensis increased markedly, while its protein content decreased obviously. The variation degree of T. viennensis protease activity and protein content was significantly higher when the chloroform extract came from the T. erecta roots under light, suggesting that there existed active matters in the extract, which could promote the activation of protease, and thus, the decomposition of protein in T. viennensis. The bioactivity of T. erecta metabolites was mainly of light-activated one.


Subject(s)
Glutathione Transferase/metabolism , Insecticides/pharmacology , Pest Control, Biological/methods , Tagetes/chemistry , Tetranychidae/drug effects , Animals , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Insecticides/isolation & purification , Peptide Hydrolases/metabolism , Plant Extracts/pharmacology , Proteins/analysis , Tetranychidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL