Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Anal Bioanal Chem ; 416(7): 1571-1587, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279012

ABSTRACT

Dragon's Blood (DB) serves as a precious Chinese medicine facilitating blood circulation and stasis dispersion. Daemonorops draco (D. draco; Qi-Lin-Jie) and Dracaena cochinchinensis (D. cochinchinenesis; Long-Xue-Jie) are two reputable plant sources for preparing DB. This work was designed to comprehensively characterize and compare the metabolome differences between D. draco and D. cochinchinenesis, by integrating liquid chromatography/mass spectrometry and untargeted metabolomics analysis. Offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), by utilizing a powerful hybrid scan approach, was elaborated for multicomponent characterization. Configuration of an XBridge Amide column and an HSS T3 column in offline mode exhibited high orthogonality (A0 0.80) in separating the complex components in DB. Particularly, the hybrid high-definition MSE-high definition data-dependent acquisition (HDMSE-HDDDA) in both positive and negative ion modes was applied for data acquisition. Streamlined intelligent data processing facilitated by the UNIFI™ (Waters) bioinformatics platform and searching against an in-house chemical library (recording 223 known compounds) enabled efficient structural elucidation. We could characterize 285 components, including 143 from D. draco and 174 from D. cochinchinensis. Holistic comparison of the metabolomes among 21 batches of DB samples by the untargeted metabolomics workflows unveiled 43 significantly differential components. Separately, four and three components were considered as the marker compounds for identifying D. draco and D. cochinchinenesis, respectively. Conclusively, the chemical composition and metabolomic differences of two DB resources were investigated by a dimension-enhanced analytical approach, with the results being beneficial to quality control and the differentiated clinical application of DB.


Subject(s)
Chemometrics , Metabolome , Plant Extracts , Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
2.
Food Chem ; 439: 138106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38056336

ABSTRACT

Accurate characterization of Panax herb ginsenosides is challenging because of the isomers and lack of sufficient reference compounds. More structural information could help differentiate ginsenosides and their isomers, enabling more accurate identification. Based on the VionTM ion-mobility high-resolution LC-MS platform, a multidimensional information library for ginsenosides, namely GinMIL, was established by predicting retention time (tR) and collision cross section (CCS) through machine learning. Robustness validation experiments proved tR and CCS were suitable for database construction. Among three machine learning models we attempted, gradient boosting machine (GBM) exhibited the best prediction performance. GinMIL included the multidimensional information (m/z, molecular formula, tR, CCS, and some MS/MS fragments) for 579 known ginsenosides. Accuracy in identifying ginsenosides from diverse ginseng products was greatly improved by a unique LC-MS approach and searching GinMIL, demonstrating a universal Panax saponins library constructed based on hierarchical design. GinMIL could improve the accuracy of isomers identification by approximately 88%.


Subject(s)
Ginsenosides , Panax , Saponins , Ginsenosides/analysis , Tandem Mass Spectrometry/methods , Panax/chemistry , Chromatography, High Pressure Liquid/methods
3.
Phytother Res ; 38(1): 384-399, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992723

ABSTRACT

Acute myocardial infarction (MI) is one of the leading causes of mortality around the world. Prunella vulgaris (Xia-Ku-Cao in Chinese) is used in traditional Chinese medicine practice for the treatment of cardiovascular diseases. However, its active ingredients and mechanisms of action on cardiac remodeling following MI remain unknown. In this study, we investigated the cardioprotective effect of P. vulgaris on MI rat models. MI rats were treated with aqueous extract of P. vulgaris or phenolic acids from P. vulgaris, including caffeic acid, ursolic acid or rosmarinic acid, 1 day after surgery and continued for the following 28 days. Then the cardioprotective effect, such as cardiac function, inflammatory status, and fibrosis areas were evaluated. RNA-sequencing (RNA-seq) analysis, real-time polymerase chain reaction (PCR), western blotting, and ELISA were used to explore the underlying mechanism. In addition, ultra-high performance liquid chromatography/mass spectrometer analysis was used to identify the chemicals from P. vulgaris. THP-1NLRP3-GFP cells were used to confirm the inhibitory effect of P. vulgaris and phenolic acids on the expression and activity of NLRP3. We found that P. vulgaris significantly improved cardiac function and reduced infarct size. Meanwhile, P. vulgaris protected cardiomyocyte against apoptosis, evidenced by increasing the expression of anti-apoptosis protein Bcl-2 in the heart and decreasing lactate dehydrogenase (LDH) levels in serum. Results from RNA-seq revealed that the therapeutic effect of P. vulgaris might relate to NLRP3-mediated inflammatory response. Results from real-time PCR and western blotting confirmed that P. vulgaris suppressed NLRP3 expression in MI heart. We also found that P. vulgaris suppressed NLRP3 expression and the secretion of HMGB1, IL-1ß, and IL-18 in THP-1NLRP3-GFP cells. Further studies indicated that the active components of P. vulgaris were three phenolic acids, those were caffeic acid, ursolic acid, and rosmarinic acid. These phenolic acids inhibited LPS-induced NLRP3 expression and activity in THP-1 cells, and improved cardiac function, suppressed inflammatory aggregation and fibrosis in MI rat models. In conclusion, our study demonstrated that P. vulgaris and phenolic acids from P. vulgaris, including caffeic acid, ursolic acid, and rosmarinic acid, could improve cardiac function and protect cardiomyocytes from ischemia injury during MI. The mechanism was partially related to inhibiting NLRP3 activation.


Subject(s)
Myocardial Infarction , Prunella , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prunella/metabolism , Ventricular Remodeling , Myocardial Infarction/drug therapy , Myocytes, Cardiac , Fibrosis , Caffeic Acids/pharmacology
4.
J Chromatogr A ; 1706: 464243, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37567002

ABSTRACT

To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.


Subject(s)
Biological Products , Ginsenosides , Panax , Ginsenosides/analysis , Panax/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Chromatography, Liquid , Flowers/chemistry , Biological Products/analysis
5.
J Agric Food Chem ; 71(24): 9391-9403, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37294034

ABSTRACT

Ginseng extracts are extensively used as raw materials for food supplements and herbal medicines. This study aimed to characterize ginsenosides obtained from six Panax plant extracts (Panax ginseng, red ginseng, Panax quinquefolius, Panax notoginseng, Panax japonicus, and Panax japonicus var. major) and compared them with their in vitro metabolic profiles mediated by rat intestinal microbiota. Ultrahigh-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) with scheduled multiple reaction monitoring (sMRM) quantitation methods were developed to characterize and compare the ginsenoside composition of the different extracts. After in vitro incubation, 248 ginsenosides/metabolites were identified by UHPLC/IM-QTOF-MS in six biotransformed samples. Deglycosylation was determined to be the main metabolic pathway of ginsenosides, and protopanaxadiol-type and oleanolic acid-type saponins were easier to be easily metabolized. Compared with the ginsenosides in plant extracts, those remaining in six biotransformed samples were considerably fewer after biotransformation for 8 h. However, the compositional differences in four subtypes of the ginsenosides among the six Panax plants became more distinct.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Panax notoginseng , Rats , Animals , Ginsenosides/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Chromatography, Liquid , Panax notoginseng/chemistry , Plant Extracts/chemistry
6.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241791

ABSTRACT

Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.


Subject(s)
Metabolome , Metabolomics , Metabolomics/methods , Mass Spectrometry/methods , Databases, Factual , Machine Learning
7.
J Chromatogr A ; 1700: 464042, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37163941

ABSTRACT

One bottleneck problem in the quality control of traditional Chinese medicine (TCM) is the accurate identification of easily confused herbal medicines from Chinese patent medicine (CPM). Ginseng products derived from the multiple parts (e.g., root/rhizome, leaf, and flower bud) of multiple Panax species (P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major) are globally popular; however, their authentication is very challenging. Using online comprehensive two-dimensional liquid chromatography (LC × LC), we propose the concept of a three-dimensional characteristic chromatogram (3D CC) by integrating enhanced LC × LC separation and a contour plot that visualizes the stereoscopic chromatographic peaks and examine its performance in authenticating various ginseng products. Targeted at the resolution of 17 ginsenoside markers, an online LC × LC/UV system with a 56 min analysis time was constructed: a CORTECS UPLC Shield RP 18 column running at 0.1 mL/min for the first-dimensional chromatography and a Poroshell SB-Aq column at 2.0 mL/min in shift gradient mode in the second dimension of separation. In particular, ginsenosides Rg1/Re and Rc/Ra1 were well resolved. According to the presence/absence of stereo peaks consistent with the main ginsenoside markers in the 3D CC and the depth of shade (depending on peak volume), it was feasible to use a single method to identify and distinguish among 12 different ginseng species as the drug materials and the use of ginseng simultaneously from 21 CPMs. Conclusively, a practical solution enabling the accurate identification of easily confused TCMs was provided, covering both the drug materials and the compound preparations.


Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Panax , Plants, Medicinal , Panax/chemistry , Ginsenosides/analysis , Nonprescription Drugs , Chromatography, High Pressure Liquid/methods , Plants, Medicinal/chemistry , Drugs, Chinese Herbal/chemistry
8.
Molecules ; 27(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558182

ABSTRACT

The flower bud of Panax notoginseng (PNF) consumed as a tonic shows potential in the prevention and treatment of cardiovascular diseases. To identify the contained multi-components and, in particular, to clarify which components can be absorbed and what metabolites are transformed, unveiling the effective substances of PNF is of vital significance. A unique ultrahigh-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) profiling approach and efficient data processing by the UNIFITM bioinformatics platform were employed to comprehensively identify the multi-components of PNF and the related metabolites in the plasma of rats after oral administration (at a dose of 3.6 g/kg). Two MS2 data acquisition modes operating in the negative electrospray ionization mode, involving high-definition MSE (HDMSE) and data-dependent acquisition (DDA), were utilized aimed to extend the coverage and simultaneously ensure the quality of the MS2 spectra. As a result, 219 components from PNF were identified or tentatively characterized, and 40 thereof could be absorbed. Moreover, 11 metabolites were characterized from the rat plasma. The metabolic pathways mainly included the phase I (deglycosylation and oxidation). To the best of our knowledge, this is the first report that systematically studies the in vivo metabolites of PNF, which can assist in better understanding its tonifying effects and benefit its further development.


Subject(s)
Drugs, Chinese Herbal , Panax notoginseng , Rats , Animals , Panax notoginseng/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Plasma/chemistry , Flowers/chemistry , Drugs, Chinese Herbal/chemistry
9.
Front Neurol ; 13: 1006830, 2022.
Article in English | MEDLINE | ID: mdl-36226080

ABSTRACT

Objective: To explore the development context, research hotspots, and frontiers of acupuncture therapy for cognitive impairment (CI) from 1992 to 2022 by visualization analysis. Methods: Articles about acupuncture therapy for cognitive impairment were retrieved from the Web of Science Core Collection (WoSCC) until 1 March 2022. Basic information was collected by Excel 2007, and VOSviewer 1.6.17 was used to analyze the co-occurrence of countries, institutes, and authors. Co-citation maps of authors and references were analyzed by CiteSpace V.5.8.R3. In addition, CiteSpace was used to analyze keyword clusters and forecast research frontiers. Results: A total of 279 articles were retrieved, including articles from 19 countries, 334 research institutes, and 101 academic journals. The most published country and institutes were the People's Republic of China (217) and the Fujian University of Traditional Chinese Medicine (40). Ronald C Petersen owned the highest co-citations (56). Keywords and co-cited references cluster showed the main research directions in this area, including "ischemic stroke," "cerebral ischemia/reperfusion," "mild cognitive impairment," "Alzheimer's disease," "vascular dementia," "vascular cognitive impairment with no dementia," "multi-infarct dementia," "synaptic injury," "functional MRI," "glucose metabolism," "NMDA," "nuclear factor-kappa b pathway," "neurotrophic factor," "matrix metalloproteinase-2 (MMP-2)," "tumor necrosis factor-alpha," "Bax," "Caspase-3," and "Noxa". Trending keywords may indicate frontier topics, such as "randomized controlled trial," "rat model," and "meta-analysis." Conclusion: This research provides valuable information for the study of acupuncture. Diseases focus on mild cognitive impairment (MCI), Alzheimer's disease (AD), and vascular dementia (VaD). Tauopathies with hyperphosphorylation of Tau protein as the main lesions also need to be paid attention to. The development of functional magnetic resonance imaging (fMRI) will better explain the therapeutic effect of acupuncture treatment. The effect of acupuncture on a single point is more convincing, and acupuncture on Baihui (GV20) may be needed in the future. Finally, the implementation of high-quality multicenter randomized controlled trials (RCTs) requires increased collaboration among experts from multiple fields and countries.

10.
J Agric Food Chem ; 70(42): 13796-13807, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36239255

ABSTRACT

Data-dependent acquisition (DDA) is widely utilized for metabolite identification in natural product research and food science, which, however, can suffer from low coverage. A potential solution to improve DDA coverage is to include the precursor ions list (PIL). Here, we aimed to construct a PIL-containing DDA strategy based on an in-house library of ginsenosides (VLG) and identify ginsenosides simultaneously from seven Panax herbal extracts. VLG, combined with mass defect filtering, could efficiently screen the ginsenoside precursors and elaborate the separate PIL involved in DDA for each ginseng extract. Consequently, we could characterize 500 ginsenosides, including 176 ones with unknown masses. Using the Panax ginseng extract, the superiority of this strategy was embodied in targeting more known ginsenoside masses and newly acquiring the MS2 spectra of 13 components. Conclusively, knowledge-based large-scale molecular prediction and PIL-DDA can represent a powerful targeted/untargeted strategy beneficial to novel natural compound discovery.


Subject(s)
Biological Products , Ginsenosides , Panax , Biological Products/metabolism , Chromatography, High Pressure Liquid , Ginsenosides/metabolism , Ions/metabolism , Libraries, Digital , Panax/metabolism , Plant Extracts/metabolism
11.
Molecules ; 27(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080314

ABSTRACT

The leaves of Panax species (e.g., Panax ginseng-PGL, P. quinquefolius-PQL, and P. notoginseng-PNL) can serve as a source for healthcare products. Comprehensive characterization and unveiling of the metabolomic difference among PGL, PQL, and PNL are critical to ensure their correct use. For this purpose, enhanced profiling and chemometrics were integrated to probe into the ginsenoside markers for PGL/PQL/PNL by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS). A hybrid scan approach (HDMSE-HDDDA) was established achieving the dimension-enhanced metabolic profiling, with 342 saponins identified or tentatively characterized from PGL/PQL/PNL. Multivariate statistical analysis (33 batches of leaf samples) could unveil 42 marker saponins, and the characteristic ginsenosides diagnostic for differentiating among PGL/PQL/PNL were primarily established. Compared with the single DDA or DIA, the HDMSE-HDDDA hybrid scan approach could balance between the metabolome coverage and spectral reliability, leading to high-definition MS spectra and the additional collision-cross section (CCS) useful to differentiate isomers.


Subject(s)
Ginsenosides , Panax notoginseng , Panax , Saponins , Biomarkers/metabolism , Chemometrics , Chromatography, High Pressure Liquid/methods , Ginsenosides/analysis , Mass Spectrometry/methods , Panax/chemistry , Plant Leaves/chemistry , Reproducibility of Results , Saponins/analysis
12.
Molecules ; 27(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35684583

ABSTRACT

Wenxin granule (WXG) is a popular traditional Chinese medicine (TCM) preparation for the treatment of arrhythmia disease. Potent analytical technologies are needed to elucidate its chemical composition and assess the quality differences among multibatch samples. In this work, both a multicomponent characterization and quantitative assay of WXG were conducted using two liquid chromatography-mass spectrometry (LC-MS) approaches. An ultra-high performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) approach combined with intelligent peak annotation workflows was developed to characterize the multicomponents of WXG. A hybrid scan approach enabling alternative data-independent and data-dependent acquisitions was established. We characterized 205 components, including 92 ginsenosides, 53 steroidal saponins, 14 alkaloids, and 46 others. Moreover, an optimized scheduled multiple reaction monitoring (sMRM) method was elaborated, targeting 24 compounds of WXG via ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC/QTrap-MS), which was validated based on its selectivity, precision, stability, repeatability, linearity, sensitivity, recovery, and matrix effect. By applying this method to 27 batches of WXG samples, the content variations of multiple markers from Notoginseng Radix et Rhizoma (21) and Codonopsis Radix (3) were depicted. Conclusively, we achieved the comprehensive multicomponent characterization and holistic quality assessment of WXG by targeting the non-volatile components.


Subject(s)
Ginsenosides , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal , Ginsenosides/analysis , Mass Spectrometry/methods
13.
J Chromatogr A ; 1675: 463177, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35660315

ABSTRACT

To comprehensively elucidate the herbal metabolites is crucial in natural products research to discover new lead compounds. Ginsenosides are an important class of bioactive components from the Panax plants exerting the significant tonifying effects. However, to identify new ginsenosides by the conventional strategies trends to be more and more difficult because of the large spans of acid-base property (the neutral and acidic saponins), molecular mass (400-1400 Da), and rather low content. Herein, an off-line multidimensional chromatography/high-resolution mass spectrometry approach was presented: ion exchange chromatography (IEC) as the first dimension of separation, hydrophilic interaction chromatography (HILIC) in the second dimension, and reversed-phase chromatography (RPC) for the third dimension which was hyphenated to a Q Exactive Q-Orbitrap mass spectrometer. By applying to the flower buds of P. ginseng (PGF), P. quinquefolius (PQF), and P. notoginseng (PNF), IEC using a PhenoSphereTM SAX column could fractionate the total extracts into the neutral (unretained) and acidic (retained) fractions, while HILIC (an XBridge Amide column) and RPC (BEH Shield RP18 column) achieved the hydrophilic interaction and hydrophobic interaction separations, respectively. Q-Orbitrap mass spectrometry offered rich structural information and complementary resolution to the co-eluting components, particular to those minor ones by including precursor ion lists in data-dependent acquisition. We could characterize 803 ginsenosides from PGF, 795 from PQF, and 833 from PNF, and 1561 thereof are potentially unknown. These results can indicate the great potential of this multidimensional approach in the ultra-deep characterization of complex herbal samples supporting the efficient discovery of potentially novel natural compounds.


Subject(s)
Ginsenosides , Panax notoginseng , Panax , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Flowers/chemistry , Ginsenosides/analysis , Mass Spectrometry , Panax/chemistry , Panax notoginseng/chemistry
14.
J Agric Food Chem ; 70(19): 5932-5944, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35503923

ABSTRACT

This work was designed to evaluate the coverage of data-dependent acquisition (DDA) extensively utilized in the untargeted metabolite/component identification in the food sciences and pharmaceutical analysis. Using saponins from the flower buds of Panax ginseng (PGF) as an example, precursor ions list (PIL)-including DDA on a Q-Orbitrap mass spectrometer could enable higher coverage than the other four MS2 acquisition approaches in characterizing PGF ginsenosides. A "Virtual Library of Ginsenoside" containing 13,536 ginsenoside molecules was established by C-language-programmed large-scale molecular prediction, which in combination with mass defect filtering could create a new PIL involving 1859 PGF saponin precursors. We could newly obtain the MS2 spectra of at least 17 components and characterize 36 ginsenosides with unknown masses, among the 164 compounds identified from PGF. Conclusively, a molecular-prediction-oriented PIL in DDA can assist to discover more potentially novel molecules benefiting to the development of functional foods and new drugs.


Subject(s)
Ginsenosides , Panax , Saponins , Chromatography, High Pressure Liquid , Flowers/chemistry , Ginsenosides/analysis , Ions
15.
Nat Prod Rep ; 39(4): 875-909, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35128553

ABSTRACT

Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.


Subject(s)
Ginsenosides , Panax , Saponins , Ginsenosides/analysis , Ginsenosides/chemistry , Ginsenosides/metabolism , Mass Spectrometry , Panax/chemistry , Panax/metabolism , Quality Control , Saponins/chemistry
16.
Anal Chim Acta ; 1193: 339320, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35058017

ABSTRACT

Data-dependent acquisition (DDA) and data-independent acquisition (DIA)-based MSn strategies are extensively applied in metabolites characterization. DDA gives accurate MSn information, but receives low coverage, while DIA covers the entire mass range, but the precursor-product ions matching often yields false positives. Currently available MS scan approaches rarely integrate DIA and DDA within a duty circle. Utilizing a Vion™ IM-QTOF (ion mobility-quadrupole time-of-flight) mass spectrometer, we report a novel hybrid scan approach, namely HDDIDDA, which involves three scan events: 1) IM-enabled full scan (MS1), 2) high-definition MSE (HDMSE) of all precursor ions (MS2); and 3) high-definition DDA (HDDDA) of top N precursors (MS2). As a proof-of-concept, the HDDIDDA approach combined with off-line two-dimensional liquid chromatography (2D-LC) was applied to characterize the multiple ingredients from a reputable Chinese patent medicine, Compound Danshen Dripping Pill (CDDP) used for treating the cardiovascular diseases. An off-line 2D-LC system by configuring an XBridge Amide column and an HSS T3 column showed a measurable orthogonality of 0.92 and enhanced the separation of co-eluting components. A fit-for-purpose HDDIDDA methodology was developed in the negative mode to characterize saponins and salvianolic acids, while tanshinones in the positive mode. Computational workflows to efficiently process the acquired HDMSE and HDDDA data were established, and the searching of an in-house CDDP library (recording 712 compounds) eventually characterized 403 components from CDDP, indicating approximate 12-fold improvement compared with the previous report. The HDDIDDA approach can measure collision cross section of each component, and merges the merits of DIA and DDA in MS2 data acquisition.


Subject(s)
Drugs, Chinese Herbal , Camphanes , Chromatography, High Pressure Liquid , Chromatography, Liquid , Ions , Panax notoginseng , Salvia miltiorrhiza
17.
Carbohydr Polym ; 277: 118867, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893272

ABSTRACT

The role of polysaccharides in quality control of ginseng is underestimated. Large-scale comparison on the polysaccharides of Panax ginseng (PG), P. quinquefolius (PQ), P. notoginseng (PN), Red ginseng (RG), P. japonicus (ZJS), and P. japonicus var. major (ZZS), was performed by both chemical and biological approaches. Holistic fingerprinting at polysaccharide and the hydrolyzed oligosaccharide and monosaccharide levels utilized various chromatography methods, while OGD and OGD/R models on H9c2 cells were introduced to evaluate the protective effects on cell viability and mitochondrial function. Polysaccharides from six ginseng species exhibited remarkable content difference (RG > PG/ZZS/ZJS/PQ > PN), but weak differentiations in molecular weight distribution and oligosaccharide profiles, while Glc and GalA were richer for monosaccharide compositions of PG and RG polysaccharides, respectively. RG polysaccharides (25/50/100 µg/mL) showed significant cardiomyocyte protection by regulating mitochondrial functions. These new evidences may provide support for the supplementary role of polysaccharides in quality control of ginseng.


Subject(s)
Myocytes, Cardiac/drug effects , Panax/chemistry , Plants, Medicinal/chemistry , Polysaccharides/pharmacology , Protective Agents/pharmacology , Animals , Carbohydrate Conformation , Cell Line , Molecular Weight , Polysaccharides/chemistry , Protective Agents/chemistry , Rats
18.
J Chromatogr A ; 1655: 462504, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34487881

ABSTRACT

Despite the extensive consumption of ginseng, precise quality control of different ginseng products is highly challenging due to the containing of ginsenosides in common for different Panax species or different parts (e.g. root, leaf, and flower) of a same species. Herein we performed a comparative investigation of diverse ginseng products by simultaneously assaying 15 saponins (notoginsenoside R1, ginsenosides Rg1, -Re, -Rf, -Ra2, -Rb1, -Rc, -Ro, -Rb2, -Rb3, -Rd, 20(R)-ginsenoside Rg3, 24(R)-pseudoginsenoside F11, chikusetsusaponins IV, and -IVa) using an ultra-high-performance liquid chromatography/charged aerosol detector (UHPLC-CAD) approach. Twelve Panax-derived ginseng products (involving P. ginseng root, P. quinquefolius root, P. notoginseng root, Red ginseng, P. ginseng leaf, P. quinquefolius leaf, P. notoginseng leaf, P. ginseng flower, P. quinquefolius flower, P. notoginseng flower, P. japonicus root, and P. japonicus var. major root) were considered. Benefiting from the condition optimization, the baseline resolution of 15 ginsenosides was achieved on a CORTECS UPLC Shield RP18 column. This method was validated as specific, precise (0.81-1.94% intra-day variation; 0.86-2.35% inter-day variation), and accurate (recovery: 90.73-107.5%), with good linearity (R2 > 0.999), high sensitivity (limit of detection: 0.02-0.21 µg; limit of quantitation: 0.04-0.42 µg) and sample stability (1.49-4.74%). Its application to 119 batches of ginseng samples unveiled vital information enabling the authentication of these different ginseng products. Detection of ginsenosides by CAD exhibited superiority over UV in sensitivity and the ability to monitor chromophore-free structures. Large-scale comparative studies by quantifying multiple markers provide methodological reference to the precise quality control of herbal medicine.


Subject(s)
Ginsenosides , Panax , Aerosols , China , Chromatography, High Pressure Liquid , Ginsenosides/analysis
19.
J Sep Sci ; 44(22): 4111-4122, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510757

ABSTRACT

Comprehensive characterization of the chemical constituents of Chinese patent medicine poses a great challenge due to the frustrating complexity resulting from superposition of multiple drugs. Lanqin Oral Liquid is a five-component Chinese patent medicine widely applied to treat pharyngeal inflammation in clinic. Here, we streamline a universal three-dimensional separation approach to efficiently identify the multicomponents from Lanqin Oral Liquid by ultra-high-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry and UNIFI/in-house library-driven automatic peak annotation. Because of the systematic optimization, the use of an HSS T3 column enabled good separation of the multiple components within 42 min, while high-definition MSE in both the negative and positive modes could characterize more classes of herbal components, thus providing the retention, collision cross-section, and MS information for each component. Benefiting from the ion mobility separation, cleaner MS1 and MS2 spectra were acquired. Aided by comparison and analysis of the fragmentation pathways of 49 reference compounds, we could characterize 175 compounds from Lanqin Oral Liquid. A validated high-performance liquid chromatography fingerprinting approach unveiled good similarity (0.985-1.000) among 22 batches of commercial samples. Conclusively, we demonstrated a practical solution to elucidating the chemical composition of Chinese patent medicines, with the potential of popularization.


Subject(s)
Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Ion Mobility Spectrometry/methods , Medicine, Chinese Traditional , Spectrometry, Mass, Electrospray Ionization/methods
20.
J Chromatogr A ; 1618: 460850, 2020 May 10.
Article in English | MEDLINE | ID: mdl-31983414

ABSTRACT

In-source fragmentation of ginsenosides in the positive ESI mode (pISF-G) frequently occurs, which results in little fragment information useful for the structural elucidation. We are aimed to unveil the genesic mechanism and explore its potential significance in quality control of Ginseng and the related compound formulae. By applying six high-resolution mass spectrometers from Agilent, Waters, and Thermo Fisher, we could primarily demonstrate the susceptibility of pISF-G. The ion clusters in the positive full-scan MS1 spectra were generated from the protonated sapogenins by successive elimination of H2O, and showed specificity for ginsenoside classification. Selective ion monitoring (SIM) of the sapogenin product ions could delineate group-target ginsenoside profiles from Ginseng. A high-selectivity characteristic chromatogram (CC) was elaborated for Ginseng, on the Vion™ IMS-QTOF mass spectrometer by IM (ion mobility) separation and quadrupole filtering of four sapogenin fragments (m/z 407.37/CCS 206.24 Å2; m/z 423.36/CCS 211.26 Å2; m/z 439.36/CCS 209.60 Å2; m/z 457.37/CCS 217.81 Å2). Chemometric analysis, based on the CC data of seven Ginseng drugs (P. ginseng, P. quinquefolius, P. notoginseng, Red ginseng, leaf of P. ginseng, P. japonicus, and P. japonicus var. major), disclosed 35 marker compounds. We could readily discriminate among P. ginseng, P. quinquefolius, and P. notoginseng, in 15 different compound formulae by identifying these marker compounds on both the Vion IMS-QTOF and QTrap 4500 mass spectrometers. Conclusively, SIM of the pISF-G sapogenin product ions renders a new concept of CC enabling the group-target profiling of ginsenosides and authentication of Ginseng and the related compound formulae.


Subject(s)
Ginsenosides/analysis , Panax/chemistry , Plants, Medicinal/chemistry , Sapogenins/analysis , Biomarkers/analysis , Discriminant Analysis , Ions , Least-Squares Analysis , Mass Spectrometry , Pharmaceutical Preparations/analysis , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL