Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 128: 91-100, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35921932

ABSTRACT

The effects of cottonseed protein concentrate (CPC) in place of fishmeal on the growth performance, immune response, digestive ability and intestinal microbiota of Litopenaeus vannamei were investigated in this study. L. vannamei (initial body weight: 0.42 ± 0.01g) was fed for 8 weeks by four isonitrogenous and isolipid feeds with CPC replacing fishmeal (FM) at 0% (control), 15% (CPC15), 30% (CPC30) and 45% (CPC45), respectively. At the end of the study, the final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR) and protein efficiency ratio (PER) of L. vannamei in CPC15 and CPC30 groups were significantly increased, while the feed conversion ratio (FCR) of L. vannamei in the CPC30 group was significantly reduced when compared with the FM group (P < 0.05). After Vibrio parahaemolyticus infection, the cumulative mortality of L. vannamei in CPC15 within 24 hpi was significantly lower than that of the control group (P < 0.05). When compared with the control group, the activities and expression of the immunity-related enzymes in the hepatopancreas had almost the same obvious change trend in the CPC-containing groups, which indicated that the replacement for fishmeal by CPC led to significant immune response in L. vannamei. Besides, significant up-regulation of the digestive enzyme activities were observed in the CPC-containing groups. Analysis of intestinal microbiota showed that significant difference in alpha diversity existed between the CPC-containing groups and the control group. The relative abundances of several top 10 dominated species at the phylum and genus levels were significantly changed in the CPC-containing groups compared with the control group (P < 0.05). Functional prediction of the microbiota indicated that the pathway of protein digestion and absorption was significantly more abundant while the pathways of nitrotoluene degradation, aminobenzoate degradation, atrazine degradation, dioxin degradation and xylene degradation were significantly less abundant in the CPC-containing groups than the FM group (P < 0.05). In summary, optimal dietary CPC replacement of FM could improve the growth, immunity, digestive capacity and the diversities of the intestinal microbial flora of L. vannamei. However, parts of the functions of the intestinal microbial flora were decline.


Subject(s)
Atrazine , Dioxins , Gastrointestinal Microbiome , Penaeidae , Aminobenzoates/pharmacology , Animal Feed/analysis , Animals , Body Weight , Cottonseed Oil , Diet/veterinary , Dioxins/pharmacology , Fishes , Immunity , Immunity, Innate , Intestines , Xylenes/analysis , Xylenes/pharmacology
2.
Brain Imaging Behav ; 15(2): 782-787, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32700258

ABSTRACT

Basal ganglia, which include the striatum and thalamus, have key roles in motivation, emotion, motor function, also contribute to higher-order cognitive function. Previous researches have documented structural and functional alterations in basal ganglia in schizophrenia. While few studies have assessed asymmetries of these characters in basal ganglia of schizophrenia. The current study investigated this issue by using diffusion tensor imaging, anatomic T1-weight image and resting-state functional data from 88 chronic schizophrenic subjects and 92 healthy controls. The structural characteristic, including fractional anisotropy, mean diffusivity (MD) and volume, were extracted and quantified from the subregions of basal ganglia, including caudate, putamen, pallidum and thalamus, through automated atlas-based method. The resting-state functional maps of these regions were also calculated through seed-based functional connectivity. Then, the laterality indexes of structural and functional features were calculated. Compared with healthy controls, schizophrenic subjects showed increased left laterality of volume in striatum and reduced left laterality of volume in thalamus. Furthermore, the difference of laterality of subregions in thalamus is compensatory in schizophrenic subjects. Importantly, the severity of patients' positive symptom was negative corelated with reduced left laterality of volume in thalamus. Our findings provide preliminary evidence demonstrating that the possibility of aberrant laterality in neural pathways and connectivity patterns related to the basal ganglia in schizophrenia.


Subject(s)
Schizophrenia , Anisotropy , Basal Ganglia/diagnostic imaging , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imaging
3.
Front Med (Lausanne) ; 7: 356, 2020.
Article in English | MEDLINE | ID: mdl-32719805

ABSTRACT

Faced with the rapid spread of the novel coronavirus disease (COVID-19), a global public health threat, psychiatric hospitals are under huge pressure to prevent and control nosocomial infection. The current research analyzed the COVID-19 infection control practices in a regional mental health center in China and addressed how this type of medical institutions could enhance their ability to prevent and control hospital transmission of major respiratory diseases and general management of nosocomial infection risks. Firstly, hospital-related risks of COVID-19 were analyzed, and targeted prevention and control measures were then established. Pre- and post-intervention theoretical knowledge of nosocomial infection control, hand hygiene compliance and accuracy, use of personal protective equipment, and disinfection and sterilization effectiveness were evaluated and compared. All the indexes displayed significant improvements following the implementation of the prevention and control measures. Up to the submission of this paper, the mental health center had obtained no suspected or confirmed case of COVID-19 infection due to hospital transmission. The findings provide empirical evidence for the effectiveness of the COVID-19 preventive strategies and have important implications for integrated and characterized infection control in mental health centers during a major epidemic. The establishment of the transitional isolation ward and air fumigation using traditional Chinese medicine for patients and staff are preventive measures worthy of further discussion and dissemination.

4.
J Med Chem ; 60(12): 5002-5014, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28549219

ABSTRACT

Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Amidohydrolases/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical/methods , Drug Resistance, Multiple, Bacterial/drug effects , Enzyme Inhibitors/chemical synthesis , Female , Hep G2 Cells/drug effects , Humans , K562 Cells/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship
5.
J Med Chem ; 56(18): 7278-88, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23981144

ABSTRACT

The tRNA-(N(1)G37) methyltransferase (TrmD) is essential for growth and highly conserved in both Gram-positive and Gram-negative bacterial pathogens. Additionally, TrmD is very distinct from its human orthologue TRM5 and thus is a suitable target for the design of novel antibacterials. Screening of a collection of compound fragments using Haemophilus influenzae TrmD identified inhibitory, fused thieno-pyrimidones that were competitive with S-adenosylmethionine (SAM), the physiological methyl donor substrate. Guided by X-ray cocrystal structures, fragment 1 was elaborated into a nanomolar inhibitor of a broad range of Gram-negative TrmD isozymes. These compounds demonstrated no activity against representative human SAM utilizing enzymes, PRMT1 and SET7/9. This is the first report of selective, nanomolar inhibitors of TrmD with demonstrated ability to order the TrmD lid in the absence of tRNA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/enzymology , tRNA Methyltransferases/antagonists & inhibitors , Adenosine/metabolism , Amines/chemical synthesis , Amines/chemistry , Amines/metabolism , Amines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Haemophilus influenzae/drug effects , Humans , Methionine/metabolism , Microbial Sensitivity Tests , Models, Molecular , Protein Structure, Tertiary , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Structure-Activity Relationship , Substrate Specificity , tRNA Methyltransferases/chemistry , tRNA Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL