Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Environ Int ; 185: 108454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316574

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are pollutants linked to adverse health effects. Diet is an important source of PFAS exposure, yet it is unknown how diet impacts longitudinal PFAS levels. OBJECTIVE: To determine if dietary intake and food sources were associated with changes in blood PFAS concentrations among Hispanic young adults at risk of metabolic diseases. METHODS: Predominantly Hispanic young adults from the Children's Health Study who underwent two visits (CHS; n = 123) and young adults from NHANES 2013-2018 who underwent one visit (n = 604) were included. Dietary data at baseline was collected using two 24-hour dietary recalls to measure individual foods and where foods were prepared/consumed (home/restaurant/fast-food). PFAS were measured in blood at both visits in CHS and cross-sectionally in NHANES. In CHS, multiple linear regression assessed associations of baseline diet with longitudinal PFAS; in NHANES, linear regression was used. RESULTS: In CHS, all PFAS except PFDA decreased across visits (all p < 0.05). In CHS, A 1-serving higher tea intake was associated with 24.8 %, 16.17 %, and 12.6 % higher PFHxS, PFHpS, and PFNA at follow-up, respectively (all p < 0.05). A 1-serving higher pork intake was associated with 13.4 % higher PFOA at follow-up (p < 0.05). Associations were similar in NHANES, including unsweetened tea, hot dogs, and processed meats. For food sources, in CHS each 200-gram increase in home-prepared food was associated with 0.90 % and 1.6 % lower PFOS at baseline and follow-up, respectively, and in NHANES was associated with 0.9 % lower PFDA (all p < 0.05). CONCLUSION: Results suggest that beverage consumption habits and food preparation are associated with differences in PFAS levels in young adults. This highlights the importance of diet in determining PFAS exposure and the necessity of public monitoring of foods and beverages for PFAS contamination.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Young Adult , Eating , Hispanic or Latino , Nutrition Surveys , Tea
2.
Biol Pharm Bull ; 45(1): 19-26, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34719576

ABSTRACT

With the development of structural biology and data mining, computer-aided drug design (CADD) has been playing an important role in all aspects of new drug development. Reverse docking, a method of virtual screening based on molecular docking in CADD, is widely used in drug repositioning, drug rescue, and traditional Chinese medicine (TCM) research, for it can search for macromolecular targets that can bind to a given ligand molecule. This review revealed the principle of reverse docking, summarized common target protein databases and docking procedures, and enumerated the applications of reverse docking in drug repositioning, adverse drug reactions, traditional Chinese medicine, and coronavirus disease 2019 (COVID-19) treatment. Hope our work can give some inspiration to researchers engaged in drug development.


Subject(s)
Drug Design , Molecular Docking Simulation , COVID-19 , Databases, Protein , Drug Repositioning , Drug-Related Side Effects and Adverse Reactions , Humans , Medicine, Chinese Traditional , SARS-CoV-2/drug effects
3.
Zhongguo Zhong Yao Za Zhi ; 42(3): 517-522, 2017 Feb.
Article in Chinese | MEDLINE | ID: mdl-28952258

ABSTRACT

It has reported that Ganoderma lucidum triterpenoids had anti-tumor activity. However, the anti-tumor target is still unclear. The present study was designed to investigate the anti-tumor activity of G. lucidum triterpenoids on different tumor cells, and predict their potential targets by virtual screening. In this experiment, molecular docking was used to simulate the interactions of 26 triterpenoids isolated from G. lucidum and 11 target proteins by LibDock module of Discovery Studio2016 software, then the anti-tumor targets of triterpenoids were predicted. In addition, the in vitro anti-tumor effects of triterpenoids were evaluated by MTT assay by determining the inhibition of proliferation in 5 tumor cell lines. The docking results showed that the poses were greater than five, and Libdock Scores higher than 100, which can be used to determine whether compounds were activity. Eight triterpenoids might have anti-tumor activity as a result of good docking, five of which had multiple targets. MTT experiments demonstrated that the ganoderic acid Y had a certain inhibitory activity on lung cancer cell H460, with IC50 of 22.4 µmol•L ⁻¹, followed by 7-oxo-ganoderic acid Z2, with IC50 of 43.1 µmol•L ⁻¹. However, the other triterpenoids had no anti-tumor activity in the detected tumor cell lines. Taking together, molecular docking approach established here can be used for preliminary screening of anti-tumor activity of G.lucidum ingredients. Through this screening method, combined with the MTT assay, we can conclude that ganoderic acid Y had antitumor activity, especially anti-lung cancer, and 7-oxo-ganoderic acid Z2 as well as ganoderon B, to a certain extent, had anti-tumor activity. These findings can provide basis for the development of anti-tumor drugs. However, the anti-tumor mechanisms need to be further studied.


Subject(s)
Antineoplastic Agents/pharmacology , Reishi/chemistry , Triterpenes/pharmacology , Cell Line, Tumor , Humans , Molecular Docking Simulation
4.
PLoS One ; 10(8): e0135866, 2015.
Article in English | MEDLINE | ID: mdl-26295572

ABSTRACT

The (-)- and (+)-clausenamide (CLA) enantiomers have different pharmacokinetic effects in animals, but their association with putative stereoselective regulation of P-glycoprotein (P-gp) remains unclear. Using three cells expressing P-gp-Caco-2, KBv and rat brain microvessel endothelial cells(RBMEC), this study investigated the association of CLA enantiomers with P-gp. The results showed that the rhodamine 123 (Rh123) accumulation, an indicator of P-gp activity, in Caco-2, KBv and RBMECs was increased by (-)CLA (1 or 5 µmol/L) at 8.2%-28.5%, but reduced by (+)CLA at 11.7%-25.9%, showing stereoselectivity in their regulation of P-gp activity. Following co-treatment of these cells with each CLA enantiomer and verapamil as a P-gp inhibitor, the (+)-isomer clearly antagonized the inhibitory effects of verapamil on P-gp efflux, whereas the (-)-isomer had slightly synergistic or additive effects. When higher concentrations (5 or 10 µmol/L) of CLA enantiomers were added, the stimulatory effects of the (+)-isomer were converted into inhibitory ones, leading to an enhanced intracellular uptake of Rh123 by 24.5%-58.2%; but (-)-isomer kept its inhibition to P-gp activity, causing 30.0%-63.0% increase in the Rh123 uptake. The biphasic effects of (+)CLA were confirmed by CLA uptake in the Caco-2 cells. (+)CLA at 1 µmol/L had significantly lower intracellular uptake than (-)CLA with a ratio[(-)/(+)] of 2.593, which was decreased to 2.167 and 1.893 after CLA concentrations increased to 2.5 and 5 µmol/L. Besides, in the non-induced KB cells, (+)CLA(5 µmol/L) upregulated P-gp expression at 54.5% relative to vehicle control, and decreased Rh123 accumulation by 28.2%, while (-)CLA(5 µmol/L) downregulated P-gp expression at 15.9% and increased Rh123 accumulation by 18.0%. These results suggested that (-)CLA could be a P-gp inhibitor and (+)CLA could be a modulator with concentration-dependent biphasic effects on P-gp activity, which may result in drug-drug interactions when combined with other P-gp substrate drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Lactams/pharmacology , Lignans/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antiviral Agents/chemistry , Biological Transport , Brain/blood supply , Brain/cytology , Caco-2 Cells , Cell Line , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Antagonism , Drug Synergism , Drugs, Chinese Herbal/chemistry , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Lactams/chemistry , Lignans/chemistry , Rats , Rhodamine 123/metabolism , Stereoisomerism , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL