Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5663-5668, 2020 Dec.
Article in Chinese | MEDLINE | ID: mdl-33496105

ABSTRACT

Unmanned aerial vehicle(UAV) remote sensing and vegetation index have great potential in the field of Chinese herbal medicine planting. In this study, the visible light image of Polygonatum odoratum planting area in Changyi district of Jilin province were acquired by UAV, and the real-time monitoring of P. odoratum planting area was realized. The green leaf index(GLI) was established, and GLI values of P. odoratum were collected used the spatial sampling points. To compare the GLI values in different periods, it was found that the GLI values of P. odoratum have three stages changing rule of rising-gentle-falling related to the germination, vigorous growth and withered of P. odoratum growth. Meanwhile, the GLI values were compared with four biomass data of P. odoratum, including plant height, leaf area, chlorophyll a and chlorophyll b content in leaves, and it was found that the GLI value was related to the growth potential of P. odoratum. The GLI value with a rapid increase in rising stage or at a high level in the gentle stage means the P. odoratum was in a better growth potential. GLI value has a same change trend with plant height, and has certain correlation with plant height and leaf area. However, there is no obvious relationship between chlorophyll a and chlorophyll b contents in leaves and GLI value. The study clarified the change rule of GLI value of P. odoratum, explained the reason for the change of GLI value, and expanded the application range of GLI. The research shows that UAV and vegetation index can be applied to monitoring the Chinese herbal medicines planting, and provides a new idea for exploring more effective information extraction methods of Chinese herbal medicines.


Subject(s)
Polygonatum , Remote Sensing Technology , Chlorophyll A , Plant Leaves
2.
PLoS One ; 12(5): e0177938, 2017.
Article in English | MEDLINE | ID: mdl-28545064

ABSTRACT

Epigallocatechin gallate (EGCG) is a main constituent of green tea polyphenols that are widely used as food preservatives and are considered to be safe for consumption. However, the underlying antimicrobial mechanism of EGCG and the bacterial response to EGCG are not clearly understood. In the present study, a genome-wide transcriptional analysis of a typical spoilage bacterium, Pseudomonas fluorescens that responded to EGCG was performed using RNA-seq technology. A total of 26,365,414 and 23,287,092 clean reads were generated from P. fluorescens treated with or without 1 mM EGCG and the clean reads were aligned to the reference genome. Differential expression analysis revealed 291 upregulated genes and 134 downregulated genes and the differentially expressed genes (DEGs) were verified using RT-qPCR. Most of the DGEs involved in iron uptake, antioxidation, DNA repair, efflux system, cell envelope and cell-surface component synthesis were significantly upregulated by EGCG treatment, while most genes associated with energy production were downregulated. These transcriptomic changes are likely to be adaptive responses of P. fluorescens to iron limitation and oxidative stress, as well as DNA and envelope damage caused by EGCG. The expression of specific genes encoding the extra-cytoplasmic function sigma factor (PvdS, RpoE and AlgU) and the two-component sensor histidine kinase (BaeS and RpfG) were markedly changed by EGCG treatment, which may play important roles in regulating the stress responses of P. fluorescens to EGCG. The present data provides important insights into the molecular action of EGCG and the possible cross-resistance mediated by EGCG on P. fluorescens, which may ultimately contribute to the optimal application of green tea polyphenols in food preservation.


Subject(s)
Bacterial Proteins/genetics , Catechin/analogs & derivatives , Gene Expression Profiling/methods , Pseudomonas fluorescens/drug effects , Sequence Analysis, RNA/methods , Catechin/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Gene Regulatory Networks , Iron/metabolism , Oxidative Stress/drug effects , Pseudomonas fluorescens/genetics , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL