Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1328741, 2024.
Article in English | MEDLINE | ID: mdl-38665877

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion's impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Insulin Resistance , Moxibustion , Polycystic Ovary Syndrome , Rats, Sprague-Dawley , Animals , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/metabolism , Female , Moxibustion/methods , Rats , Dehydroepiandrosterone/metabolism , Blood Glucose/metabolism , Insulin/blood , Insulin/metabolism , Metformin/pharmacology , Testosterone/blood , Ovary/metabolism , Ovary/microbiology
2.
Adv Sci (Weinh) ; : e2308337, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572504

ABSTRACT

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

3.
Psychiatry Clin Neurosci ; 78(4): 248-258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38318694

ABSTRACT

AIM: This study investigated the impact of an 8-month daily-guided intensive meditation-based intervention (iMI) on persistent hallucinations/delusions and health-related quality of life (QoL) in male inpatients with schizophrenia with treatment-refractory hallucinations and delusions (TRHDs). METHODS: A randomized controlled trial assigned 64 male inpatients with schizophrenia and TRHD equally to an 8-month iMI plus general rehabilitation program (GRP) or GRP alone. Assessments were conducted at baseline and the third and eighth months using the Positive and Negative Syndrome Scale (PANSS), 36-Item Short Form-36 (SF-36), and Five Facet Mindfulness Questionnaire (FFMQ). Primary outcomes measured PANSS reduction rates for total score, positive symptoms, and hallucinations/delusions items. Secondary outcomes assessed PANSS, SF-36, and FFMQ scores for psychotic symptoms, health-related QoL, and mindfulness skills, respectively. RESULTS: In the primary outcome, iMI significantly improved the reduction rates of PANSS total score, positive symptoms, and hallucination/delusion items compared with GRP at both the third and eighth months. Treatment response rates (≥25% reduction) for these measures significantly increased in the iMI group at the eighth month. Concerning secondary outcomes, iMI significantly reduced PANSS total score and hallucination/delusion items, while increasing scores in physical activity and mindfulness skills at both the third and eighth months compared with GRP. These effects were more pronounced with an 8-month intervention compared with a 3-month intervention. CONCLUSIONS: An iMI benefits patients with TRHDs by reducing persistent hallucinations/delusions and enhancing health-related QoL. Longer iMI duration yields superior treatment outcomes.


Subject(s)
Meditation , Schizophrenia , Humans , Male , Schizophrenia/complications , Schizophrenia/therapy , Delusions/therapy , Quality of Life , Inpatients , Hallucinations/etiology , Hallucinations/therapy
4.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365245

ABSTRACT

Increasing ocean temperatures threaten the productivity and species composition of marine diatoms. High temperature response and regulation are important for the acclimation of marine diatoms to such environments. However, the molecular mechanisms behind their acclimation to high temperature are still largely unknown. In this study, the abundance of PtCPF1 homologs (a member of the cryptochrome-photolyase family in the model diatom Phaeodactylum tricornutum) transcripts in marine phytoplankton is shown to increase with rising temperature based on Tara Oceans datasets. Moreover, the expression of PtCPF1 in P. tricornutum at high temperature (26 °C) was much higher than that at optimum temperature (20 °C). Deletion of PtCPF1 in P. tricornutum disrupted the expression of genes encoding two phytotransferrins (ISIP2A and ISIP1) and two Na+/P co-transporters (PHATRDRAFT_47667 and PHATRDRAFT_40433) at 26 °C. This further impacted the uptake of Fe and P, and eventually caused the arrest of cell division. Gene expression, Fe and P uptake, and cell division were restored by rescue with the native PtCPF1 gene. Furthermore, PtCPF1 interacts with two putative transcription factors (BolA and TF IIA) that potentially regulate the expression of genes encoding phytotransferrins and Na+/P co-transporters. To the best of our knowledge, this is the first study to reveal PtCPF1 as an essential regulator in the acclimation of marine diatoms to high temperature through the coordination of Fe and P uptake. Therefore, these findings help elucidate how marine diatoms acclimate to high temperature.


Subject(s)
Diatoms , Symporters , Diatoms/metabolism , Iron/metabolism , Cryptochromes/metabolism , Temperature , Phosphorus/metabolism , Acclimatization , Symporters/metabolism
5.
Mol Biol Rep ; 51(1): 266, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302764

ABSTRACT

BACKGROUND: Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS: To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION: Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.


Subject(s)
Anthraquinones , Mitochondrial Dynamics , Protein Kinases , Rats , Animals , Rats, Sprague-Dawley , Protein Kinases/metabolism , Autophagy , Mitochondria/metabolism , Apoptosis , Ubiquitin-Protein Ligases/metabolism
6.
Medicine (Baltimore) ; 103(3): e36467, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241548

ABSTRACT

Osteosarcoma (OS) has a high recurrence rate, disability rate, mortality and metastasis, it brings great economic burden and psychological pressure to patients, and then seriously affects the quality of life of patients. At present, the treatment methods of OS mainly include radiotherapy, chemotherapy, surgical therapy and neoadjuvant chemotherapy combined with limb salvage surgery. These treatment methods can relieve the clinical symptoms of patients to a certain extent, and also effectively reduce the disability rate, mortality and recurrence rate of OS patients. However, because metastasis of tumor cells leads to new complications, and OS cells become resistant with prolonged drug intervention, which reduces the sensitivity of OS cells to drugs, these treatments still have some limitations. More and more studies have shown that traditional Chinese medicine (TCM) has the characteristics of "multiple targets and multiple pathways," and can play an important role in the development of OS through several key signaling pathways, including PI3K/AKT, Wnt/ß-catenin, tyrosine kinase/transcription factor 3 (JAK/STAT3), Notch, transforming growth factor-ß (TGF-ß)/Smad, nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), nuclear factor E2-related factor 2 (Nrf2), Hippo/YAP, OPG/RANK/RANKL, Hedgehog and so on. In this paper, the signaling pathways of cross-interference between active ingredients of TCM and OS were reviewed, and the development status of novel OS treatment was analyzed. The active ingredients in TCM can provide therapeutic benefits to patients by targeting the activity of signaling pathways. In addition, potential strategies for targeted therapy of OS by using ferroptosis were discussed. We hope to provide a unique insight for the in-depth research and clinical application of TCM in the fields of OS growth, metastasis and chemotherapy resistance by understanding the signaling crosstalk between active ingredients in TCM and OS.


Subject(s)
Medicine, Chinese Traditional , Osteosarcoma , Humans , Phosphatidylinositol 3-Kinases/metabolism , Quality of Life , Signal Transduction , NF-kappa B/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/metabolism
7.
Ecotoxicol Environ Saf ; 271: 115999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262096

ABSTRACT

The hypothesis of paternal origins of health and disease (POHaD) indicates that paternal exposure to adverse environment could alter the epigenetic modification in germ line, increasing the disease susceptibility in offspring or even in subsequent generations. p,p'-Dichlorodiphenyldichloroethylene (p,p'-DDE) is an anti-androgenic chemical and male reproductive toxicant. Gestational p,p'-DDE exposure could impair reproductive development and fertility in male offspring. However, the effect of paternal p,p'-DDE exposure on fertility in male offspring remains uncovered. From postnatal day (PND) 35 to 119, male rats (F0) were given 10 mg/body weight (b.w.) p,p'-DDE or corn oil by gavage. Male rats were then mated with the control females to generate male offspring. On PND35, the male offspring were divided into 4 groups according whether to be given the high-fat diet (HF): corn oil treatment with control diet (C-C), p,p'-DDE treatment with control diet (DDE-C), corn oil treatment with high-fat diet (C-HF) or p,p'-DDE treatment with high-fat diet (DDE-HF) for 35 days. Our results indicated that paternal p,p'-DDE exposure did not affect the male fertility of male offspring directly, but decreased sperm quality and induced testicular apoptosis after the high-fat diet treatment. Further analysis demonstrated that paternal exposure to p,p'-DDE and pre-pubertal high-fat diet decreased sperm Igf2 DMR2 methylation and gene expression in male offspring. Hence, paternal exposure to p,p'-DDE and pre-pubertal high-fat diet increases the susceptibility to male fertility impairment and sperm Igf2 DMR2 hypo-methylation in male offspring, posing a significant implication in the disease etiology.


Subject(s)
Dichlorodiphenyl Dichloroethylene , Paternal Exposure , Humans , Female , Male , Rats , Animals , Paternal Exposure/adverse effects , Dichlorodiphenyl Dichloroethylene/toxicity , Diet, High-Fat/adverse effects , Corn Oil/pharmacology , Semen , Spermatozoa , Fertility , Methylation
8.
Article in English | MEDLINE | ID: mdl-38064616

ABSTRACT

Objective: This study was carried out to evaluate the clinical efficacy of proprotein convertase chymotrypsin 9 (PCSK9) inhibitors in multi-branch lesions in coronary artery disease with substandard lipid-lowering effects. Methods: This retrospective study collected the clinical data of 100 patients with multiple coronary artery diseases admitted to our hospital between May 2020 and August 2022 for analysis. The eligible patients were assigned to either a PCSK9 inhibitor group or a control group at a ratio of 1:1 by their dosing regimens, with 50 cases in each group. Outcome measures for the clinical efficacy of PCSK9 inhibitors included lipid levels, low-density lipoprotein cholesterol (LDL-C) changes, serum concentrations of coronary artery disease-related inflammatory factors, improvement of angina questionnaire scores, adverse reactions, and major cardiovascular adverse events. Results: PCSK9 inhibitors resulted in significantly lower serum concentrations of total cholesterol (TC), LDL-C, and ApoB and higher high-density lipoprotein cholesterol (HDL-C) levels versus conventional lipid-lowering medication (P < .05). The two arms exhibited similar serum concentrations of triglyceride (TG) and ApoA1 after treatment (P > .05). With LDL-C<1.4 mmol/L as the cut-off for desirable blood lipid levels, 47 (94%) patients reached the standard after in the PCSK9 inhibitors group, while no eligible cases were reported in the control group (P < .05). PCSK9 inhibitors provided a marked reduction in the serum concentrations of high-sensitivity C-reactive protein in the patients. Patients had higher angina stability (AS), angina flare (AF), physical limitation (PL), and treatment satisfaction (TS) scores after PCSK9 inhibitor administration versus after conventional medication (P < .05). PCSK9 inhibitors were associated with a significantly lower incidence of adverse cardiovascular events (10%) versus conventional medication (42%) (P < .05). Conclusion: PCSK9 inhibitors significantly improve the LDL-C concentrations of patients with multiple lesions of coronary artery disease who have failed to meet lipid-lowering targets, this enables physicians to more effectively manage patients' cholesterol levels, consequently reducing their cardiovascular risk. Moreover, these inhibitors have the potential to enhance patients' quality of life by alleviating relieve angina symptoms. These findings offer valuable insights into managing multi-branch coronary artery disease.

9.
Environ Sci Pollut Res Int ; 30(58): 122038-122050, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964148

ABSTRACT

Phytoestrogens (PEs) may harm liver function. However, studies in pregnant women are limited. Our study was conducted in pregnant women to assess the effect of serum PEs on liver function markers. We conducted a cross-sectional study focusing in the first trimester of pregnancy. A total of 352 pregnant women were enrolled in the study. We used generalized linear model (GLM) to explore the associations between each PE and each marker of liver function. We used Quantile g-computation (Qgcomp) and Bayesian kernel machine regression (BKMR) models to explore the associations between mixed exposure to all PEs and liver function markers. The GLM results showed that equol (EQU), daidzein (DAD), genistein (GEN), enterolactone (ENT), and enterodiol (END) were negatively correlated with albumin (ALB). DAD and GEN were associated with elevated alanine aminotransferase (ALT). DAD, GEN, naringin (NAR), and glycitein (GLY) were related to elevated aspartate aminotransferase (AST). Mixed exposure model results showed that the mixture of PEs was associated with reduced ALB. Our results support the existence of associations between PEs and maternal liver function in the first trimester. Emphasizing the detrimental associations between serum PEs and liver function in pregnant women is essential to ensure maternal liver health during pregnancy.


Subject(s)
Genistein , Phytoestrogens , Humans , Female , Pregnancy , Cross-Sectional Studies , Bayes Theorem , Liver , China
10.
Article in English | MEDLINE | ID: mdl-37944976

ABSTRACT

Objective: To explore the clinical study of glutamine combined with early enteral nutrition support on the nutritional status of gastric cancer patients undergoing neoadjuvant chemotherapy. Methods: Divided into control and observation groups, a control group received routine enteral nutrition, while the observation group received an additional 0.5 g/kg/d of glutamine. The researchers measured nutritional indicators, immunoglobulins, T lymphocyte subsets, and stress indexes such as fasting blood sugar and C-reactive protein throughout the study. Results: Before nutritional support, there was no significant difference in the HGB, TP, and ALB levels. During nutritional support, however, the observation group began registering significantly higher levels of HGB, TP, and ALB, suggesting that glutamine intervention can improve the nutritional status of patients. Throughout the study, the CD4+ level showed a consistent increase in the observation group. The levels of IgA and IgG in the observation group also grew significantly higher. Both groups had higher blood glucose levels before nutritional support. However, on day 8 and day 15, the levels decreased. The observation group had significantly lower fasting blood glucose (FBG) levels than the control group. By day 15, the FBG levels in the observation group were close to normal. The CRP level showed a consistent decrease in the observation group compared to the control group on day 8 and day 15. Glutamine intervention appears to improve the stress capacity of gastric cancer patients undergoing neoadjuvant chemotherapy. Overall, the findings suggest that glutamine intervention in enteral nutrition can significantly improve immune function, nutritional status, and stress capacity in gastric cancer patients undergoing neoadjuvant chemotherapy and appears to be more effective than conventional enteral nutrition. Conclusion: The combination of glutamine and early enteral nutrition support can significantly improve gastric cancer patients undergoing neoadjuvant chemotherapy's nutritional status and immune function levels. It is a safe and reliable enteral nutrition support method worthy of clinical promotion.

11.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2601-2609, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37897266

ABSTRACT

We sieved soils from a Pinus massoniana plantation in the Three Gorges Reservoir area into four aggregate sizes, including aggregates of 2000-8000 µm (large macroaggregates), 1000-2000 µm (coarse aggregates), 250-1000 µm (small macroaggregates), and <250 µm (microaggregates). We analyzed the differences in the acidolyzable organic N components and net N mineralization of the aggregates under different N addition levels (30, 60, and 90 kg N·hm-2·a-1, representing by N30, N60 and N90, respectively). The results showed that net nitrification rate of the aggregates ranged from 0.30-3.42 mg N·kg-1 and accounted for more than 80% of net nitrogen mineralization. Compared with the control, addition of 30, 60, and 90 kg N·hm-2·a-1 increased total N by 24.1%-45.5%, 6.4%-34.3%, and 7.9%-42.4% in the large aggregates, coarse aggregate, small macroaggregates, and microaggregates, increased net N mineralization rate by 1.3-7.2, 1.4-6.6, and 1.8-12.9 times, but decreased the contents of available phosphorus by 9.3%-36.9%, 12.2%-56.7%, and 19.2%-61.9%, respectively. The contents of total acidolyzable N, soil organic matter, and rates of net ammonification, net nitrification, and net N mineralization increased as the aggregate size decreased, while available phosphorus contents showed an opposite trend. The levels of acid-hydrolyzable N components were ranked as acidolyzable amino acid N > acidolyzable ammonia N > acidolyzable unknown N> acidolyzable amino sugar N. Total N was the dominant contributor to the increases in acid-hydrolyzable N components. Results of stepwise multiple regression analyses showed that acidoly-zable amino acid N and acidolyzable amino sugar N were predictors of net ammonification rate. Acidolyzable amino sugar N, acidolyzable amino acid N, and acidolyzable ammonia N were predictors of net nitrification, net nitrogen mineralization rate, and net nitrogen mineralization accumulation. The physical structure of aggregates was associa-ted with soil net N mineralization. Addition of N increased the contents and bioavailability of acidolyzable organic N, a large amount of which contributed to soil organic matter levels and the decrease in available phosphorus.


Subject(s)
Nitrogen , Pinus , Nitrogen/analysis , Ammonia/analysis , Soil/chemistry , Phosphorus/analysis , China , Amino Acids , Amino Sugars , Carbon/analysis
12.
Poult Sci ; 102(12): 103155, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871490

ABSTRACT

Fatty liver hemorrhagic syndrome is a widespread metabolic disease in laying hens that decreases egg production and even causes death in severe cases. Many traditional Chinese medicine ingredients, such as saikosaponin a (SSa), have been shown to alleviate fatty liver, but the underlying mechanisms remain unclear. In this study, we aimed to explore the alleviation of dietary SSa on excessive hepatic lipid deposition and the interactions between intestinal microbiota and bile acid (BA) in laying hens. Fifty-four 35-wk-old laying hens were randomly allocated into 3 treatment groups with 6 replicates (3 birds per replicate) and fed with a basal diet (CON), high-energy and low-protein diet (HELP), and HELP diet with 30 mg/kg SSa (HELP + SSa). SSa reversed diet-induced egg production rate decrease (P < 0.05). SSa could potently ameliorate HELP-induced accumulation of hepatic cholesterol and liver injury via the increase (P < 0.05) of mRNA expression of BA synthesis gene, such as cholesterol 7 alpha-hydroxylase 1. SSa treatment alleviated gut dysbiosis, especially reducing (P < 0.05) the relative abundance of bile salt hydrolase (BSH)-producing bacteria such as Lactobacillus, Bifidobacterium, and Turicibacter. Ileal BA metabolomic analysis revealed that SSa increased (P < 0.05) the content of tauro-conjugated BAs, mainly taurochenodeoxycholic acid and tauro-α-muricholic acid. The mRNA expression of farnesoid X receptor (FXR) and fibroblast growth factor 19 were decreased (P < 0.05) in intestine, which was associated with increased gene expression of enzymes in the BA synthesis that reduced the levels of cholesterol. Moreover, SSa treatment inhibited intestinal BA reabsorption via decreasing (P < 0.05) the mRNA expression of apical sodium-dependent bile acid transporter. Our findings indicated that SSa reduced liver cholesterol accumulation and alleviated fatty liver in laying hens through microbiota-BA-intestinal FXR crosstalk.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Animals , Female , Bile Acids and Salts/metabolism , Chickens/metabolism , Liver/metabolism , Diet/veterinary , Fatty Liver/metabolism , Fatty Liver/veterinary , Cholesterol/metabolism , RNA, Messenger/metabolism
13.
Molecules ; 28(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836702

ABSTRACT

Lonicerae japonicae flos and Lonicerae flos are increasingly widely used in food and traditional medicine products around the world. Due to their high demand and similar appearance, they are often used in a confused or adulterated way; therefore, a rapid and comprehensive analytical method is highly required. In this case, the comparative analysis of a total of 100 samples with different species, growth modes, and processing methods was carried out by nuclear magnetic resonance (1H-NMR) spectroscopy and chemical pattern recognition analysis. The obtained 1H-NMR spectrums were employed by principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and linear discriminant analysis (LDA). Specifically, after the dimensionality reduction of data, linear discriminant analysis (LDA) exhibited good classification abilities for the species, growth modes, and processing methods. It is worth noting that the sample prediction accuracy from the testing set and the cross-validation predictions of the LDA models were higher than 95.65% and 98.1%, respectively. In addition, the results showed that macranthoidin A, macranthoidin B, and dipsacoside B could be considered as the main differential components of Lonicerae japonicae flos and Lonicerae Flos, while secoxyloganin, secologanoside, and sweroside could be responsible for distinguishing cultivated and wild Lonicerae japonicae Flos. Accordingly, 1H-NMR spectroscopy combined with chemical pattern recognition gives a comprehensive overview and provides new insight into the quality control and evaluation of Lonicerae japonicae flos.


Subject(s)
Drugs, Chinese Herbal , Lonicera , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts , Lonicera/chemistry , Magnetic Resonance Spectroscopy
14.
Molecules ; 28(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630314

ABSTRACT

The fraud phenomenon is currently widespread in the traditional Chinese medicine Radix Astragali (RA) market, especially where high-quality RA is substituted with low-quality RA. In this case, focused on polysaccharides from RA, the classification models were established for discrimination of RA from different growth patterns, origins, species, and growth years. 1H Nuclear Magnetic Resonance (H1-NMR) was used to establish the spectroscopy of polysaccharides from RA, which were used to distinguish RA via chemical pattern recognition methods. Specifically, orthogonal partial least squares discriminant analysis (OPLS-DA) and linear discriminant analysis (LDA) were used to successfully establish the classification models for RA from different growth patterns, origins, species, and growth years. The satisfactory parameters and high accuracy of internal and external verification of each model exhibited the reliable and good prediction ability of the developed models. In addition, the polysaccharide content and immunological activity were also tested, which was evaluated by the phagocytic activity of RAW 264.7. And the result showed that growth patterns and origins significantly affected the quality of RA. However, there was no significant difference in the aspects of origins and growth years. Accordingly, the developed strategy combined with chemical information, biological activity, and multivariate statistical method can provide new insight for the quality evaluation of traditional Chinese medicine.


Subject(s)
Drugs, Chinese Herbal , Magnetic Resonance Imaging , Polysaccharides , Magnetic Resonance Spectroscopy
15.
Anal Chim Acta ; 1276: 341618, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37573108

ABSTRACT

Due to their superparamagnetism and enzyme-like activity, iron oxide (Fe3O4) nanozymes can be readily used for sample pretreatment and the generation of detection signals, and have, thus, attracted much attention in the field of bioanalysis and diagnosis. However, the low catalytic activity of Fe3O4 nanozymes does reduce the sensitivity of Fe3O4-based methods, limiting their application. In this study, Fe3O4@Cu@poly(pyrrole-2-carboxylic acid) yolk-shell nanozymes (Fe3O4@Cu@PCPy YSNs) were synthesized using a facile approach and selective chemical etching technology. Compared with Fe3O4 nanozymes, the Fe3O4@Cu@PCPy YSNs demonstrated a three-fold increase in the peroxidase-like activity, good dispersity and strong superparamagnetism. In addition, the flower-shaped structure of aptamer-complementary strand (Apt-CS) conjugates was designed on the surface of the Fe3O4@Cu@PCPy YSNs, which effectively inhibited their peroxidase-like activity by creating a physical barrier that hindered the access of substrates to the center of the Fe3O4@Cu@PCPy YSNs. Based on this principle, a robust and facile colorimetric aptasensor was developed for detecting Salmonella Typhimurium. The flower-shaped Apt-CS were dissociated in the presence of S. Typhimurium, promoting the recovery of Fe3O4@Cu@PCPy YSN catalytic activity. Under optimized conditions, this proposed aptasensor successfully detected S. Typhimurium in a linear range of 3 to 3 × 106 CFU/mL, achieving a detection limit of 1 CFU/mL. Finally, the feasibility of this novel aptasensor was further validated by three actual samples, with recoveries of between 84.3% and 102%, thereby demonstrating the huge potential of the proposed aptasensor for detecting S. Typhimurium in foods.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Salmonella typhimurium , Colorimetry , Aptamers, Nucleotide/chemistry , Peroxidases , Limit of Detection , Biosensing Techniques/methods
16.
Mikrochim Acta ; 190(7): 260, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37318602

ABSTRACT

High-throughput screening platforms are fundamental for the rapid and efficient processing of large amounts of experimental data. Parallelization and miniaturization of experiments are important for improving their cost-effectiveness. The development of miniaturized high-throughput screening platforms is essential in the fields of biotechnology, medicine, and pharmacology. Currently, most laboratories use 96- or 384-well microtiter plates for screening; however, they have disadvantages, such as high reagent and cell consumption, low throughput, and inability to avoid cross-contamination, which need to be further optimized. Droplet microarrays, as novel screening platforms, can effectively avoid these shortcomings. Here, the preparation method of the droplet microarray, method of adding compounds in parallel, and means to read the results are briefly described. Next, the latest research on droplet microarray platforms in biomedicine is presented, including their application in high-throughput culture, cell screening, high-throughput nucleic acid screening, drug development, and individualized medicine. Finally, the challenges and future trends in droplet microarray technology are summarized.


Subject(s)
High-Throughput Screening Assays , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical , Microarray Analysis/methods
17.
Exp Ther Med ; 25(5): 199, 2023 May.
Article in English | MEDLINE | ID: mdl-37090075

ABSTRACT

Functional constipation (FC), a common symptom that is primarily associated with intestinal motility dysfunction, is a common problem worldwide. Arctiin (Arc) is a lignan glycoside isolated from the Chinese herbal medicine Arctium lappa L., which is a health food in China. The present study aimed to evaluate the laxative effects of Arc against FC in mice. A model of FC induced by loperamide (5 mg/kg) was established in male Institute of Cancer Research (ICR) mice. Arc was administered at a dose of 100 mg/kg as a protective agent. The faecal status, intestinal motility and histological analyses were evaluated. Furthermore, the levels of gastrointestinal motility-associated neurotransmitters, such as motilin (MTL), nitric oxide (NO), and brain-derived neurotrophic factor (BDNF) and the protective effect of Arc on interstitial cells of Cajal (ICC) were assessed. Arc treatment reversed the loperamide-induced reduction in faecal number and water content and the intestinal transit ratio in ICR mice. Histological analysis confirmed that Arc administration mitigated colonic injury. Moreover, Arc treatment increased levels of motilin and brain-derived neurotrophic factor while decreasing nitric oxide levels and ICC injury in the colon of FC mice. Arc decreased inflammation induction and aquaporin expression levels. Owing to its pro-intestinal motility property, Arc was shown to have a protective effect against FC and may thus serve as a promising therapeutic strategy for the management of FC.

18.
Plant Signal Behav ; 18(1): 2163339, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36630727

ABSTRACT

Although flavonoids play multiple roles in plant growth and development, the involvement in plant self-incompatibility (SI) have not been reported. In this research, the fertility of transgenic tobacco plants overexpressing the Ginkgo biloba dihydroflavonol 4-reductase gene, GbDFR6, were investigated. To explore the possible physiological defects leading to the failure of embryo development in transgenic tobacco plants, functions of pistils and pollen grains were examined. Transgenic pistils pollinated with pollen grains from another tobacco plants (either transgenic or wild-type), developed full of well-developed seeds. In contrast, in self-pollinated transgenic tobacco plants, pollen-tube growth was arrested in the upper part of the style, and small abnormal seeds developed without fertilization. Although the mechanism remains unclear, our research may provide a valuable method to create SI tobacco plants for breeding.


Subject(s)
Ginkgo biloba , Nicotiana , Ginkgo biloba/genetics , Nicotiana/physiology , Pollen/genetics , Pollination/genetics , Phenotype
19.
Adv Healthc Mater ; 12(12): e2202424, 2023 05.
Article in English | MEDLINE | ID: mdl-36640265

ABSTRACT

While calcium-overload-mediated therapy (COMT) is a promising but largely untapped therapeutic strategy, combinatory therapy greatly boosts treatment outcomes with integrated merits of different therapies. Herein, a BPQD@CaO2 -PEG-GPC3Ab nanoplatform is formulated by integrating calcium peroxide (CaO2 ) and black phosphorus quantum dot (BPQD, photosensitizer) with active-targeting glypican-3 antibody (GPC3Ab), for combinatory photodynamic therapy (PDT) and COMT in response to acidic pH and near-infrared (NIR) light, wherein CaO2 serves as the reservoir of calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ). Navigated by GPC3Ab to tumor cells at acidic pH, the nanoparticle disassembles to CaO2 and BPQD; CaO2 produces COMT Ca2+ and H2 O2 , while H2 O2 makes oxygen (O2 ) to promote PDT; under NIR irradiation BPQD facilitates not only the conversion of O2 to singlet oxygen (1 O2 ) for PDT, but also moderate hyperthermia to accelerate NP dissociation to CaO2 and BPQD, and conversions of CaO2 to Ca2+ and H2 O2 , and H2 O2 to O2 , to enhance both COMT and PDT. After supplementary ionomycin treatment to induce intracellular Ca2+ bursts, the multimodal therapeutics strikingly induce hepatocellular carcinoma apoptosis, likely through the activation of the calpains and caspases 12, 9, and 3, up-regulation of Bax and down-regulation of Bcl-2 proteins. This nanoplatform enables a mutually-amplifying and self-reinforcing synergistic therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Photochemotherapy , Humans , Calcium , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Oxygen , Hydrogen Peroxide , Cell Line, Tumor
20.
Nutrients ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678155

ABSTRACT

Maternal betaine supplementation has been proven to alleviate non-alcoholic fatty liver disease (NAFLD) in offspring caused by maternal high-fat diet (MHFD). The gut-liver axis plays an important role in NAFLD pathogenesis. However, whether maternal betaine supplementation can alleviate NAFLD in offspring by the gut-liver axis is unknown. C57BL/6J mice were fed with high-fat diet for 4 weeks before mating, and supplemented with 1% betaine during pregnancy and lactation. After weaning, offspring mice were fed with standard diet to 10 weeks. Maternal betaine supplementation reduced hepatic triglyceride content and alleviated hepatic steatosis in offspring mice exposed to MHFD. Furthermore, the mRNA expression of PPARα, CPT1α and FATP2 was increased and TNFα was reduced by maternal betaine supplementation. Maternal betaine intake decreased the relative abundances of Proteobateria, Desulfovibrio and Ruminococcus, but increased the relative abundances of Bacteroides and Parabacteroides. Moreover, maternal betaine intake increased the concentrations of short-chain fatty acids (SCFAs), including acetic acid, butyric acid and valeric acid, in the feces. Gut microbiota and SCFAs were significantly correlated with hepatic triglyceride content and expression of the above genes. Maternal betaine intake had no effect on other gut microbiota-related metabolites (bile acid and trimethylamine-n-oxide). Altogether, maternal betaine supplementation ameliorated MHFD-induced NAFLD possibly through regulating gut microbiota and SCFAs in offspring mice.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Pregnancy , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat/adverse effects , Betaine/pharmacology , Betaine/metabolism , Mice, Inbred C57BL , Liver/metabolism , Dietary Supplements , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL