Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Ethnopharmacol ; 323: 117687, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38163554

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum sinense Oliv. and L. jeholense Nakai et Kitag. are globally recognized as medicinal botanical species, specifically the rhizomes and roots. These plant parts are collectively referred to as Ligustici Rhizoma et Radix (LReR), which is recorded in the Pharmacopoeia of the People's Republic of China (Ch. P). LReR enjoys widespread recognition in many countries such as China, Russia, Vietnam, and Korea. It is an herbal remedy traditionally employed for dispelling wind and cold, eliminating dampness, and alleviating pain. Numerous bioactive compounds have been successfully isolated and identified, displaying a diverse array of pharmacological activities and medicinal value. THE AIM OF THE REVIEW: This review aims to primarily center on the botanical aspects, ethnopharmacology, phytochemistry, pharmacology, toxicity, quality control, and other applications of LReR to furnish a comprehensive and multidimensional foundation for future exploration and utilization. MATERIALS AND METHODS: Relevant information about LReR was acquired from ancient books, doctoral and master's dissertations, Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, classical literature, and clinical reports. Several electronic databases were also incorporated. RESULTS: In traditional usage, LReR had been traditionally employed for the treatment of anemofrigid headaches, colds, and joint pain. It possessed therapeutic properties for facial skin disorders, thereby facilitating skin regeneration. It has been subjected to comprehensive chemical analysis, resulting in the identification and isolation of 190 compounds, including phthalides, phenylpropanoids, flavonoids, phenolic acids, triterpenes, steroids, volatile oil, fatty acids, and other constituents. The pharmacological activities have been in-depth explored through modern in vivo and in vitro studies, confirming its anti-inflammatory, analgesic, and anti-melanin effects. Furthermore, it exhibited pharmacological activities such as antioxidant, anticancer, antibacterial, and vasodilatory properties. This study provides a basic to contribute to the advancement of research, medicinal applications and product development related to LReR. CONCLUSIONS: Considering its traditional and contemporary applications, phytochemical composition, and pharmacological properties, LReR was regarded as a valuable botanical resource for pharmaceutical and pest control purposes. While certain constituents had demonstrated diverse pharmacological activities and application potential, further elucidation was required to fully understand their specific actions and underlying mechanisms. Hence, there was a need to conduct additional investigations to uncover its material foundation and mode of action.


Subject(s)
Botany , Rhizome , Humans , Ethnopharmacology , Rhizome/chemistry , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/analysis , Quality Control
2.
Front Endocrinol (Lausanne) ; 14: 1237260, 2023.
Article in English | MEDLINE | ID: mdl-37711905

ABSTRACT

Objective: This study aims to evaluate the effect of acupuncture on the emotion domain and metabolic parameters of Chinese women with polycystic ovarian syndrome (PCOS) by secondary analysis of a randomized clinical trial, conducted from 6 July 2012 to 7 October 2015. Method: In this study, we investigated the effects of acupuncture (458 patients) and sham acupuncture (468 patients) on metabolic parameters, serum ions, and all quality-of-life scale scores related to PCOS. The quality of life of patients was evaluated using five relevant scales, operated by the research assistant, namely, PCOSQ, SF-36, and ChiQOL, as well as Zung-SAS and Zung-SDS. Metabolic parameters and serum ions were measured. Results: A reduction in acne score, AN, Hcy, and LDL-C, and an increase in the level of lipoprotein α, Apo A1, and Apo A1/Apo B were observed in the acupuncture group after 4 months' intervention after adjusting clomiphene and reproductive outcome (p< 0.05). An increase in SF-36 total scores, RP and RE scores, ChiQOL total scores, and emotion domain scores was observed in the acupuncture group after 4 months' intervention, while PF and HT scores were decreased (adjusted p< 0.05). Those same changes were observed in sham acupuncture. Meanwhile, the serum levels of Ca, K, and Cl were elevated in the acupuncture group after the interventions (adjusted p< 0.005). There were no significant differences in HOMA-IR, MetS, FPG, FINS, HDL-C, TG, Apo B, and level of serum P, Mg, and Na. Also, no changes in BP, GH, VT, SF, physical form domain, and spirit domain were observed after treatment. Conclusion: Acupuncture can improve not only the emotional changes in SF-36 scores and ChiQOL scores, but also lipid metabolism, implying that it may have a correlation between emotional change and lipid metabolism. Furthermore, acupuncture can also regulate the changes of serum Ca, K, and Cl. Clinical trial registration: ClinicalTrials.gov, identifier NCT01573858.


Subject(s)
Acupuncture Therapy , Polycystic Ovary Syndrome , Humans , Female , Apolipoprotein A-I , Polycystic Ovary Syndrome/therapy , Quality of Life , Apolipoproteins B , Emotions
3.
Phytother Res ; 37(7): 2939-2956, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36938853

ABSTRACT

This study investigated antimalarial efficacy and sensitization of chrysosplenetin against artemisinin-resistant Plasmodium berghei K173 and potential molecular mechanism. Our data indicated a risk of artemisinin resistance because a higher parasitaemia% and lower inhibition% under artemisinin treatment against resistant parasites than those in the sensitive groups were observed. Two non-antimalarial components, verapamil and chrysosplentin, being P-gp inhibitors, possessed a strong efficacy against resistant parasites but it was not the case for Bcrp inhibitor novobiocin. Artemisinin-chrysosplenetin combination improved artemisinin susceptibility of resistant P. berghei. Artemisinin activated intestinal P-gp and Abcb1/Abcg2 expressions and suppressed Bcrp whereas chrysosplenetin reversed them. Resistant parasite infection led to a decreased haemozoin in organs or an increased heme in peripheral bloods compared with the sensitives; however, that in Abcb1-deficient knockout (KO)-resistant mice reversely got increased or decreased versus wild type (WT)-resistant animals. Chrysosplenetin as well as rifampin (nuclear receptor agonist) increased the transcription levels of PXR/CAR while showed a versatile regulation on hepatic and enternal PXR/CAR in WT- or KO-sensitive or -resistant parasites. Oppositely, hepatic and enteric NF-κB p52 mRNA decreased conformably in WT but increased in KO-resistant mice. NF-κB pathway potentially involved in the mechanism of chrysosplenetin on inhibiting P-gp expressions while PXR/CAR play a more complicated role in this mechanism.


Subject(s)
Antimalarials , Artemisinins , Mice , Animals , Antimalarials/pharmacology , Plasmodium berghei , NF-kappa B p52 Subunit/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Neoplasm Proteins , Artemisinins/pharmacology , Signal Transduction , ATP Binding Cassette Transporter, Subfamily B/genetics , Homeostasis , Heme/pharmacology
4.
J Ethnopharmacol ; 308: 116223, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36781057

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW: The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS: Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION: Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.


Subject(s)
Arctium , Botany , Lignans , Pharyngitis , Humans , Ethnopharmacology , Fruit/chemistry , Arctium/chemistry , Lignans/analysis , Quality Control , Phytochemicals/analysis
5.
J Ethnopharmacol ; 305: 116128, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36623754

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases at a certain stage, with excessive accumulation of collagen fibers, excessive increase in collagen content, and a significant increase in collagen volume as the main pathological changes. There are currently no effective drugs for the treatment of myocardial fibrosis. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years, especially in China, often exerts a wider action spectrum than previously attempted options in treating human diseases. In recent times, the great potential of TCM in the treatment of MF has received much attention. Especially many experimental studies on the treatment of MF by Astragalus mongholicus Bunge have been conducted, and the effect is remarkable, which may provide more comprehensive database and theoretical support for the application of Astragalus mongholicus Bunge in the treatment of MF and could be considered a promising candidate drug for preventing MF. AIM OF THE REVIEW: This review summarizes the chemical components of Astragalus mongholicus Bunge, Astragalus mongholicus Bunge extract, Astragalus mongholicus Bunge single prescription, and Astragalus mongholicus Bunge compound preparation in the treatment of MF, and provides comprehensive information and a reliable basis for the exploration of new treatment strategies of botanical drugs in the therapy of MF. METHODS: The literature information was obtained from the scientific databases on ethnobotany and ethnomedicines (up to August 2022), mainly from the PubMed, Web of Science, and CNKI databases. The experimental studies on the anti-myocardial fibrosis role of the effective active components of Astragalus mongholicus Bunge and the utility of its compound preparation and the involved mechanisms were identified. The search keywords for such work included: "myocardial fibrosis" or "Cardiac fibrosis ", and "Astragalus mongholicus Bunge", "extract," or "herb". RESULTS: Several studies have shown that the effective active components of Astragalus mongholicus Bunge and its formulas, particularly Astragaloside IV, Astragalus polysaccharide, total saponins of Astragalus mongholicus Bunge, triterpenoid saponins of Astragalus mongholicus Bunge, and cycloastragenol, exhibit potential benefits against MF, the mechanisms of which appear to involve the regulation of inflammation, oxidant stress, and pro-fibrotic signaling pathways, etc. Conclusion: These research works have shown the therapeutic benefits of Astragalus mongholicus Bunge in the treatment of MF. However, further research should be undertaken to clarify the unconfirmed chemical composition and regulatory mechanisms, conduct standard clinical trials, and evaluate the possible side effects. The insights in the present review provided rich ideas for developing new anti-MF drugs. THESIS: Myocardial fibrosis (MF) with excessive accumulation of collagen fibers, excessive increase in collagen content, and a significant increase in collagen volume as the main pathological changes is a common pathological manifestation of many cardiovascular diseases at a certain stage, which seriously affects cardiac function. At present, there is still a lack of effective drugs for the treatment of MF. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years especially in China, often exerts wider action spectrum than previously attempted options in treating human diseases. In recent times, the great potential of TCM in the treatment of MF has received much attention. Especially many experimental studies on the treatment of MF by Astragalus mongholicus Bunge have been conducted, and the effect is remarkable, which may provide more comprehensive data base and theoretical support for the application of Astragalus mongholicus Bunge in the treatment of MF and could be considered a promising candidate drug for preventing MF.


Subject(s)
Cardiovascular Diseases , Drugs, Chinese Herbal , Saponins , Humans , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Cardiovascular Diseases/drug therapy , Fibrosis , Saponins/chemistry
6.
J Ethnopharmacol ; 304: 116022, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36481246

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Perilla frutescens (Linnaeus) Britton, Mem. Torrey Bot. Club 5: 277. 1894., is famous as a worldwide plant with multiple medical parts, including leaves, stems, fruits, etc. Perillae Fructus, the desiccative ripe fruit of P. frutescens, is locally called Zisuzi in Chinese Pharmacopoeia. It is a popularly used herb for relieving cough and asthma, dissipating phlegm and treating constipation in some Asian countries, such as China, Japan, India, South Korea, etc. Various chemical compounds were isolated and identified from Perillae Fructus. THE AIM OF THE REVIEW: This review aims to summarize the botany, ethnopharmacological applications, phytochemistry, pharmacology, toxicity and quality control of Perillae Fructus to provide scientific evidence for development and utilization Perillae Fructus. MATERIALS AND METHODS: Relevant information about Perillae Fructus was collected from ScienceDirect, PubMed, Web of science, CNKI, WanFang data, ancient classics and clinical reports. Some electronic databases were also retrieved. RESULTS: Perillae Fructus was exerted to treat cough and asthma in traditional application. It also had the effect on moistening intestine to relieve constipation for tremendous lipid substances. Up to now, 193 compounds have been isolated and identified from Perillae Fructus, mainly including fatty acids, flavonoids, phenolic acids, phytosterols, triterpenoids and volatile oils. As for its pharmacological activities, prevalent traditional applications of Perillae Fructus have been supported by modern pharmacological experiments in vivo or in vitro, such as anti-inflammatory and anti-oxidant effects. Besides, Perillae Fructus also has hypolipidemic, anti-tumor, antibacterial effects, etc. This review will provide a scientific basis for further studies and rational applications of Perillae Fructus in the future. CONCLUSIONS: According to its traditional applications, phytochemicals and pharmacological activities, Perillae Fructus was regarded as a valuable herb for application in medicine and food fields. Although some ingredients have been confirmed to have multiple pharmacological activities, their mechanisms of action are still unclear. Further studies on the material basis and mechanism of action are clearly warranted.


Subject(s)
Botany , Fruit , Ethnopharmacology , Cough/drug therapy , Medicine, Chinese Traditional , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Phytochemicals/therapeutic use , Phytochemicals/toxicity , Quality Control
7.
Article in English | MEDLINE | ID: mdl-36159566

ABSTRACT

Neonatal respiratory distress syndrome (NRDS) is generally treated with surfactant by intubation-surfactant-extubation (InSurE) technique, an invasive method of surfactant administration. Surfactant without endotracheal tube intubation (SurE) is a noninvasive technique that avoids intubation and has been found to have improved the delivery of exogenous surfactants, thereby decreasing lung damage in neonates. This systematic review aimed to provide insights into the efficacy of SurE over InSurE in neonates who received respiratory support and to evaluate the progression and onset of concurrent diseases after treatment. The CENTRAL, PubMed, and Embase databases were searched for data collection. In all, 21 research articles were eligible, comprising 19,976 study participants. The data showed a significant reduction in the composite outcome of stage 2 necrotizing enterocolitis, bronchopulmonary dysplasia, and onset of hemodynamically significant patent ductus arteriosus when treated with SurE. The trend towards lower pneumothorax rates with SurE was also evident. These findings were robust due to the sensitivity analyses performed. There were no differences in the outcome of death or rates of other neonatal morbidities. Overall, SurE was identified as a better substitute for InSurE to treat neonates with RDS.

8.
ACS Nano ; 16(5): 7535-7546, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35413177

ABSTRACT

The implementation of cisplatin-based neoadjuvant chemotherapy (NAC) plays a key role in conjunction with surgical resection in preventing bladder cancer progression and recurrence. However, the significant dose-dependent toxic side effects of NAC are still a major challenge. To solve this problem, we developed a photoenhanced cancer chemotherapy (PECC) strategy based on AIEgen ((E)-3-(2-(2-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)vinyl)-1,1-dimethyl-1H-3λ4-benzo[e]indol-3-yl)propane-1-sulfonate), which is abbreviated as BITT. Multifunctional BITT@BSA-DSP nanoparticles (NPs) were employed with an albumin-based nanocarrier decorated with the cisplatin(IV) prodrug and loaded to produce strong near-infrared fluorescence imaging (NIR FLI), and they exhibited good photoenhancement performance via photodynamic therapy (PDT) and photothermal therapy (PTT). In vitro results demonstrated that BITT@BSA-DSP NPs could be efficiently taken up by bladder cancer cells and reduced to release Pt (II) under reductase, ensuring the chemotherapy effect. Furthermore, both in vitro and in vivo evaluation verified that the integration of NIR FL imaging-guided PECC efficiently promoted the sensitivity of bladder cancer to cisplatin chemotherapy with negligible side effects. This work provides a promising strategy to enhance the sensitivity of multiple cancers to chemotherapy drugs and even achieve effective treatments for drug-resistant cancers.


Subject(s)
Nanoparticles , Photochemotherapy , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/drug therapy , Cisplatin/pharmacology , Cisplatin/therapeutic use , Photochemotherapy/methods , Phototherapy/methods , Albumins , Cell Line, Tumor , Nanoparticles/therapeutic use
9.
Fitoterapia ; 156: 105101, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34921925

ABSTRACT

Chemical fractionation of the EtOH extract of a medicinal macro fungus, Inonotus obliquus, afforded an array of lanostane-type triterpenoids (1-11) including two new ones (1 and 8). The structures of these compounds were determined on the basis of spectroscopic analyses, single crystal X-ray crystallography of 3-6 and biosynthetic considerations. With the confirmatory structural information provided by X-ray diffraction analysis in hand, several previously reported 21,24-cyclolanostanes, such as inonotsutriols A-C and (20R,21S,24S)-21,24-cyclopenta-3ß,21,25-trihydroxylanosta-8-ene, were structurally corrected. In addition, the NMR data of other types of 21,24-cyclo triterpenoids were also re-examined and structural revisions were thus suggested. Compounds 2, 6 and 8 showed significant cytostatic effects against a panel of tumor cell lines with IC50 values ranging from 7.80 to 18.5 µM. Further assays established that compound 2 exerted promising in vitro anti-breast cancer potential by inhibiting the proliferation and migration of 4T1 cells.


Subject(s)
Inonotus/chemistry , Triterpenes/isolation & purification , Biological Assay , Cell Line , Cell Survival , Crystallography, X-Ray , Fruiting Bodies, Fungal/chemistry , Inhibitory Concentration 50 , Molecular Structure , Optical Rotation , Triterpenes/chemistry , Triterpenes/metabolism , Triterpenes/toxicity , X-Ray Diffraction
10.
Plant J ; 108(4): 1174-1192, 2021 11.
Article in English | MEDLINE | ID: mdl-34473873

ABSTRACT

Globally, commercialized plum cultivars are mostly diploid Chinese plums (Prunus salicina Lindl.), also known as Japanese plums, and are one of the most abundant and variable fruit tree species. To advance Prunus genomic research, we present a chromosome-scale P. salicina genome assembly, constructed using an integrated strategy that combines Illumina, Oxford Nanopore, and high-throughput chromosome conformation capture (Hi-C) sequencing. The high-quality genome assembly consists of a 318.6-Mb sequence (contig N50 length of 2.3 Mb) with eight pseudo-chromosomes. The expansion of the P. salicina genome is led by recent segmental duplications and a long terminal repeat burst of approximately 0.2 Mya. This resulted in a significant expansion of gene families associated with flavonoid metabolism and plant resistance, which impacted fruit flavor and increased species adaptability. Population structure and domestication history suggest that Chinese plum may have originated from South China and provides a domestication route with accompanying genomic variations. Selection sweep and genetic diversity analysis enabled the identification of several critical genes associated with flowering time, stress tolerance, and flavonoid metabolism, demonstrating the essential roles of related pathways during domestication. Furthermore, we reconstructed and exploited flavonoid-anthocyanin metabolism using multi-omics analysis in Chinese plum and proposed a complete metabolic pathway. Collectively, our results will facilitate further candidate gene discovery for important agronomic traits in Chinese plum and provide insights into future functional genomic studies and DNA-informed breeding.


Subject(s)
Chromosomes, Plant/genetics , Flavonoids/metabolism , Genetic Variation , Genome, Plant/genetics , Prunus domestica/genetics , Anthocyanins/metabolism , Diploidy , Domestication , Fruit/genetics , Fruit/physiology , Genomics , High-Throughput Nucleotide Sequencing , Metabolic Networks and Pathways , Prunus domestica/physiology , Sequence Analysis, DNA
11.
Biomed Pharmacother ; 139: 111582, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33895525

ABSTRACT

BACKGROUND: Shenmai Injection (SMI) has been widely used in the treatment of cardiovascular diseases and can reduce side effects when combined with chemotherapy drugs. However, the potential protective mechanism of SMI on the cardiotoxicity caused by anthracyclines has not been clear. METHODS: We used network pharmacology methods to collect the compound components in SMI and myocardial injury targets, constructed a 'drug-disease' target interaction network relationship diagram, and screened the core targets to predict the potential mechanism of SMI in treating cardiotoxicity of anthracyclines. In addition, the rat model of doxorubicin cardiotoxicity was induced by injecting doxorubicin through the tail vein. The rats were randomized in the model group, miR-30a agomir group, SMI low-dose group, SMI high-dose group,and the control group. The cardiac ultrasound was used to evaluate the structure and function of the rat heart. HE staining was used to observe the pathological changes of the rat myocardium. Transmission electron microscopy was used to observe myocardial autophagosomes. The expression of miR-30a and Beclin 1 mRNA in the rat myocardium was detected by RT-qPCR. Western Blot detected the expression of LC3-II/LC3-I and p62 protein. RESULTS: The network pharmacological analysis found that SMI could act synergistically through multiple targets and multiple pathways, which might exert a myocardial protective effect through PI3K-Akt signaling pathways and cancer microRNAs. In vivo, compared with the control group, the treatment group could improve the cardiac structure and function, and reduce myocardial pathological damage and the number of autophagosomes. The expression of miR-30a in the myocardium of rats in miR-30a agomir group and SMI group increased (P < 0.01),Beclin 1 mRNA was decreased (P < 0.01),LC3-Ⅱ/LC3-I protein was decreased (P < 0.01 or P < 0.05),and p62 protein was increased (P < 0.01 or P < 0.05). CONCLUSIONS: SMI has the characteristics of multi-component, multi-target, and multi-pathway. It can inhibit myocardial excessive autophagy by regulating the expression of miR-30a/Beclin 1 and alleviate the myocardial injury induced by doxorubicin.


Subject(s)
Beclin-1/drug effects , Doxorubicin/antagonists & inhibitors , Doxorubicin/toxicity , Drugs, Chinese Herbal/pharmacology , MicroRNAs/drug effects , Signal Transduction/drug effects , Animals , Autophagy/drug effects , Cardiotoxicity/prevention & control , Drug Combinations , Drugs, Chinese Herbal/administration & dosage , Echocardiography , Male , Microtubule-Associated Proteins/biosynthesis , Microtubule-Associated Proteins/genetics , Myocardium/pathology , Oncogene Protein v-akt/drug effects , Phagosomes/pathology , Phosphatidylinositol 3-Kinases/drug effects , Rats , Rats, Sprague-Dawley
12.
Angew Chem Int Ed Engl ; 59(25): 9952-9956, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32017333

ABSTRACT

New, biocompatible materials with favorable antibacterial activity are highly desirable. In this work, we develop a unique conjugated polymer featuring aggregation-induced emission (AIE) for reliable bacterial eradication. Thanks to the AIE and donor-π-acceptor structure, this polymer shows a high reactive oxygen species (ROS)-generation ability compared to a low-mass model compound and the common photosensitizer Chlorin E6. Moreover, the selective binding of pathogenic microorganisms over mammalian cells was found, demonstrating its biocompatibility. The effective growth inhibition of bacteria upon polymer treatment under light irradiation was validated in vitro and in vivo. Notably, the recovery from infection after treatment with our polymer is faster than that with cefalotin. Thus, this polymer holds great promise in fighting against bacteria-related infections in practical applications.


Subject(s)
Bacterial Infections/therapy , Photochemotherapy/methods , Polymers/therapeutic use , Animals , Bacteria/drug effects , Biocompatible Materials , Cells, Cultured , Chlorophyllides , HeLa Cells , Humans , Microbial Sensitivity Tests , Photosensitizing Agents/therapeutic use , Polymers/chemical synthesis , Porphyrins/therapeutic use , Reactive Oxygen Species
13.
Mitochondrial DNA B Resour ; 5(3): 2030-2031, 2020 May 12.
Article in English | MEDLINE | ID: mdl-33457730

ABSTRACT

Allium mongolicum is a kind of wild vegetable with high nutritional value and even a traditional Chinese medicine. Here, we reported the complete chloroplast genome sequence of Allium mongolicum. The size of the chloroplast genome is 153,376 bp in length, including a large single copy region (LSC) of 82,912 bp, a small single copy region (SSC) of 18,054 bp, and a pair of inverted repeated regions of 26,205 bp. The Allium mongolicum chloroplast genome encodes 115 genes, including 69 protein-coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic tree showed that Allium mongolicum is closely related to Allium przewalskianum.

14.
Pharmacol Res ; 151: 104552, 2020 01.
Article in English | MEDLINE | ID: mdl-31747557

ABSTRACT

In recent years, although the concept and means of modern treatment of chronic heart failure(CHF) are continually improving, the readmission rate and mortality rate are still high. At present, there is evidence that there is a link between gut microbiota and heart failure, so the intervention of gut microbiota and its metabolites is expected to become a potential new therapeutic target in heart failure. Traditional Chinese medicine(TCM) has apparent advantages in stabilizing the disease, improving heart function, and improving the quality of life. It can exert its effect by operating in the gut microbiota and is an ideal intestinal micro-ecological regulator. Therefore, this article will mainly discuss the advantages of traditional Chinese medicine in treating CHF, the relationship between traditional Chinese medicine and gut microbiota, the relationship between CHF and gut microbiota, and the ways of regulating gut microbiota by traditional Chinese medicine to prevent and treat CHF. It will specify the target and mechanism of traditional Chinese medicine treating heart failure by acting gut microbiota and provide ideas for the treatment of heart failure.


Subject(s)
Cardiotonic Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Heart Failure/drug therapy , Animals , Cardiotonic Agents/pharmacology , Chronic Disease , Drugs, Chinese Herbal/pharmacology , Heart Failure/prevention & control , Humans , Medicine, Chinese Traditional
15.
Mitochondrial DNA B Resour ; 4(2): 2579-2580, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-33365634

ABSTRACT

Pterygocalyx volubilis Maxim. (Gentianaceae) is a traditional Chinese medicine, and its whole grass is used in the treatment of pulmonary tuberculosis and other conditions. Here, the complete chloroplast genome sequence of P. volubilis was reported based on the Illumina HiSeq Platform. The chloroplast genome genome is 154,365 bp in length, containing a pair of inverted repeated (IR) regions (25,928 bp) that are separated by a large single copy (LSC) region of 84,033 bp, and a small single copy (SSC) region of 18,476 bp. Moreover, a total of 130 functional genes were annotated, including 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. In the maximum-likelihood (ML) phylogenetic tree, Pterygocalyx clustered with the genus Swertia. This sequenced chloroplast genome of P. volubilis supports that Pterygocalyx belongs to subtribe Swertiinae.

16.
Mitochondrial DNA B Resour ; 4(2): 2863-2864, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-33365764

ABSTRACT

Allium tuberosum is a popular vegetable, condiment, and even a traditional Chinese medicine. Here, the complete chloroplast genome sequence of Allium tuberosum was reported. The size of the chloroplast genome is 154,056 bp in length, including a large single copy region (LSC) of 83,068 bp, a small single copy region (SSC) of 17,958 bp, and a pair of inverted repeat (IR) regions with 26,515 bp. The Allium tuberosum chloroplast genome encodes 132 genes, including 87 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Phylogenetic tree analysis suggested that Allium tuberosum was closely related to Allium sativum.

17.
Small ; 14(35): e1801612, 2018 08.
Article in English | MEDLINE | ID: mdl-30084540

ABSTRACT

The need for better imaging assisted cancer therapy calls for new biocompatible agents with excellent imaging and therapeutic capabilities. This study successfully fabricates albumin-cooperated human serum albumin (HSA)-GGD-ICG nanoparticles (NPs), which are comprised of a magnetic resonance (MR) contrast agent, glycyrrhetinic-acid-modified gadolinium (III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (GGD), and a fluorescence (FL) dye, indocyanine green (ICG), for multimodal MR/FL imaging assisted cancer therapy. These HSA-GGD-ICG NPs with excellent biocompatibility are stable under physiological conditions, and exhibit enhanced T1 contrast capability and improved fluorescence imaging capacity. In vitro experiments reveal an apparent effect of the NPs in killing tumor cells under low laser irradiation, due to the enhanced photothermal conversion efficiency (≈85.1%). Importantly, multimodal MR/FL imaging clearly shows the in vivo behaviors and the efficiency of tumor accumulation of HSA-GGD-ICG NPs, as confirmed by a pharmacokinetic study. With the guidance of multimodal imaging, photothermal therapy is subsequently conducted, which demonstrates again high photothermal conversion capability for eliminating tumors without relapse. Notably, real-time monitoring of tumor ablation for prognosis and therapy evaluation is also achieved by MR imaging. This strategy of constructing nanoplatforms through albumin-mediated methods is both convenient and efficient, which would enlighten the design of multimodal imaging assisted cancer therapy for potential clinical translation.


Subject(s)
Biocompatible Materials/chemistry , Hyperthermia, Induced , Magnetic Resonance Imaging , Nanoparticles/chemistry , Optical Imaging , Phototherapy , Animals , Aza Compounds/chemistry , Cell Line, Tumor , Combined Modality Therapy , Heterocyclic Compounds, 1-Ring/chemistry , Indocyanine Green/chemistry , Mice , Nanoparticles/ultrastructure , Phantoms, Imaging , Prognosis , Serum Albumin, Human/chemistry , Temperature
19.
Sci Rep ; 6: 33963, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27678063

ABSTRACT

Combination therapy is a popular treatment for various diseases in the clinic. Among the successful cases, Traditional Chinese Medicinal (TCM) formulae can achieve synergistic effects in therapeutics and antagonistic effects in toxicity. However, characterizing the underlying molecular synergisms for the combination of drugs remains a challenging task due to high experimental expenses and complication of multicomponent herbal medicines. To understand the rationale of combination therapy, we investigated Sini Decoction, a well-known TCM consisting of three herbs, as a model. We applied our established diseases-specific chemogenomics databases and our systems pharmacology approach TargetHunter to explore synergistic mechanisms of Sini Decoction in the treatment of cardiovascular diseases. (1) We constructed a cardiovascular diseases-specific chemogenomics database, including drugs, target proteins, chemicals, and associated pathways. (2) Using our implemented chemoinformatics tools, we mapped out the interaction networks between active ingredients of Sini Decoction and their targets. (3) We also in silico predicted and experimentally confirmed that the side effects can be alleviated by the combination of the components. Overall, our results demonstrated that our cardiovascular disease-specific database was successfully applied for systems pharmacology analysis of a complicated herbal formula in predicting molecular synergetic mechanisms, and led to better understanding of a combinational therapy.

20.
Anal Chem ; 87(17): 8941-8, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26252508

ABSTRACT

The innovative applications of engineered nanoparticles (NPs) in medicine, such as diagnosis and therapy, have attracted considerable attention. It is highly important to predict the interactions between engineered NPs and the complex biological system as well as the impacts on the subsequent behaviors in living subjects. Herein, we report the use of T1 contrast-enhanced magnetic resonance imaging (MRI) to monitor the in vivo behaviors of NPs in a real-time manner. We chose ultrasmall Pd nanosheets (SPNSs) as the object of NPs because of their promise in theranostics and fitness for diverse surface chemistry. SPNSs were modified with different surface coating ligands (e.g., polyethylene glycol, zwitterionic ligands, polyethylenimine) and functionalized with Gd-chelates to render T1 contrast-enhanced capability. MRI real-time monitoring recorded the location and accumulation of SPNSs in small animals and revealed the prominent roles of surface coating ligands in pharmacokinetics. These results highlighted the significance of selecting proper surface coating for particular biomedical assignment. Moreover, we demonstrated a powerful and noninvasive means to predict and detect the behaviors of NPs in living subjects, which may be helpful for rational design and screening of engineered NPs in biomedical applications.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging , Metal Nanoparticles/chemistry , Neoplasms, Experimental/diagnosis , Palladium/chemistry , Theranostic Nanomedicine , Animals , Contrast Media/administration & dosage , Contrast Media/pharmacokinetics , HeLa Cells , Humans , Metal Nanoparticles/administration & dosage , Mice , Neoplasms, Experimental/therapy , Palladium/administration & dosage , Phototherapy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL