Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Elife ; 92020 09 09.
Article in English | MEDLINE | ID: mdl-32902384

ABSTRACT

Absence seizures result from 3 to 5 Hz generalized thalamocortical oscillations that depend on highly regulated inhibitory neurotransmission in the thalamus. Efficient reuptake of the inhibitory neurotransmitter GABA is essential, and reuptake failure worsens human seizures. Here, we show that blocking GABA transporters (GATs) in acute rat brain slices containing key parts of the thalamocortical seizure network modulates epileptiform activity. As expected, we found that blocking either GAT1 or GAT3 prolonged oscillations. However, blocking both GATs unexpectedly suppressed oscillations. Integrating experimental observations into single-neuron and network-level computational models shows how a non-linear dependence of T-type calcium channel gating on GABAB receptor activity regulates network oscillations. Receptor activity that is either too brief or too protracted fails to sufficiently open T-type channels necessary for sustaining oscillations. Only within a narrow range does prolonging GABAB receptor activity promote channel opening and intensify oscillations. These results have implications for therapeutics that modulate inhibition kinetics.


Subject(s)
Calcium Channels, T-Type/metabolism , Models, Neurological , Neurons/physiology , Thalamus/physiology , Animals , Cells, Cultured , GABA Plasma Membrane Transport Proteins/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA-B/metabolism , Seizures/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL