Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 351: 119980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176386

ABSTRACT

In the context of rapid global urbanization, the sustainable development of ecosystems should be considered. Accordingly, the Planetary Boundaries theory posits that reducing the amount of nitrogen and phosphorus pollutants entering bodies of water is necessary as excess levels may harm the aquatic environment and reduce in water quality. Thus, based on the long-term monitoring data of representative urban rivers in the Yangtze River Delta region, we evaluated the nitrogen and phosphorus pollution of water bodies in different urbanization stages and further quantified the effect of urban forests on water quality improvement. The results showed that, with the continuous progression of urbanization, the proportion of impervious surface area increased, along with the levels of nitrogen and phosphorus pollution in water bodies. The critical period of water quality deterioration in urban rivers occurred during the medium urbanization level when the proportion of impervious surface area reached 55-65 %, and the probability of an abrupt increase in total nitrogen (TN) and total phosphorus (TP) concentration exceeded 95 %. However, increasing the area of urban forests during this period reduced TN pollution by 36.64 % and TP pollution by 49.03 %. The results of this study support the expansion of urban forests during the medium urbanization stage to improve water quality. Furthermore, our results provide a reference and theoretical basis for urban forest construction as a key aspect of the sustainable development of the urban ecosystem in the Yangtze River Delta and similar regions around world.


Subject(s)
Water Pollutants, Chemical , Water Quality , Ecosystem , Urbanization , Quality Improvement , Forests , Nitrogen/analysis , Phosphorus/analysis , China , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
2.
Theor Appl Genet ; 134(10): 3237-3247, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34272568

ABSTRACT

KEY MESSAGE: Cotton male fertility-associated gene GhGLP4, encoding a germin-like protein, is essential for anthers development by keeping ROS homeostasis through reducing H2O2 level. Utilization of heterosis is an important way to increase cotton yield and improve fiber quality in hybrid cotton development programs. Male sterility is used in the development of cotton hybrids to reduce the cost of hybrid seed production by eliminating the process of emasculation. From the transcriptome analysis of genic male sterile mutant (ms1) and its background C312 of G. hirsutum, a gene encoding germin-like protein (GhGLP4) was found significantly down-regulated in different developmental stages of ms1 anthers. To explore the gene function in cotton fertility, GhGLP4 was further studied and interfered by virus-induced gene silencing. In the GhGLP4 interfered cotton lines, the expression level of GhGLP4 was significantly decreased in the stamens, and the down-regulation of GhGLP4 resulted in pollen sac closure, stigma exertion, filament shortening, decrease in the number of anthers and complete male sterility. The expression levels of respiratory burst oxidase homologs (Rboh, NADPH oxidase) were significantly altered. Further investigation showed that the SOD activity decreased while the H2O2 content increased in the atypical stamens. These results indicated that GhGLP4 gene affected the cotton anther development through maintenance of ROS homeostasis by H2O2 reduction.


Subject(s)
Gene Expression Regulation, Plant , Gossypium/growth & development , Gossypium/genetics , Phenotype , Plant Infertility/genetics , Plant Proteins/metabolism , Pollen/chemistry , Flowers/chemistry , Gene Expression Profiling , Glycoproteins/genetics , Glycoproteins/metabolism , Hydrogen Peroxide/analysis , Hydrogen Peroxide/metabolism , Plant Proteins/genetics
3.
J Environ Manage ; 285: 112096, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33582473

ABSTRACT

With continuous population growth and acceleration of urbanization in China, environmental problems in drinking-water source areas have become increasingly prominent. In some places, domestic wastewater and aquaculture sewage are directly discharged into water bodies without any treatment. Also, large amounts of domestic garbage and aquaculture waste are often randomly stacked, seriously polluting the surrounding groundwater and surface water and deteriorating the water quality. Notably, some agricultural production activities can also cause non-point source pollution, resulting from eutrophication of water bodies. In some instances, these activities can lead to nitrogen losses of 0.7%-83.9% and phosphorus losses of 0.6%-82.8%. In view of this situation, the implementation of cleaner agricultural production is of great significance for protecting the environment in drinking-water source areas and maintaining drinking-water safety. Specific practicable measures include formula fertilization through soil testing, integrated pest management, and water-saving irrigation technology. For the livestock- and poultry-breeding industry, it is necessary for large-scale farms to construct excreta discharge treatment facilities, carry out harmless treatment and resource utilization of organic wastes, establish rural biogas septic tanks, and make use of domestic-sewage and livestock-breeding wastewaters. Also, fixed garbage-dumping sites should be built in rural water-source areas, and a unified garbage-disposal station set up to reduce the pollution discharge of domestic garbage. Moreover, it is crucial to strictly control the development and utilization of hillsides in the middle and upper reaches of the drinking-water source area, as well as strengthen the restoration of vegetation and the construction of soil and water conservation forests in these areas.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Agriculture , China , Environmental Monitoring , Nitrogen/analysis , Non-Point Source Pollution/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis
4.
J Environ Manage ; 268: 110657, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32510428

ABSTRACT

The non-point source pollution of drinking water source areas is a global issue which is mainly caused by unreasonable management of the commercial forests growing in the upstream areas. However the occurrence and specific mechanism of runoff pollution in these areas have not been approached. In order to clarify the factors influencing the non-point source pollution in the area, the test plot in Fushi Reservoir watershed covered by Phyllostachys edulis plantations with pure and modified stands was chosen, and the characteristics of soil chemical properties, enzyme activities and the coupling between soil factors and surface runoff of were initially analyzed, the relationship between soil factors and surface runoff pollutants was examined using redundancy analysis. The results showed that pH, soil nitrate reductase (S-NR) and catalase (S-CAT) were the key factors affecting the differentiation of water quality in surface runoff. The total nitrogen (TN) concentration in surface runoff was positively correlated with S-NR but negatively correlated with pH, TN and alkali-hydrolyzed nitrogen (AN) concentrations in soil. The total phosphorus (TP) concentration was negative correlation with soil pH and TP. In addition, the permanganate index (CODMn) concentration has positive correlation with urease (S-UE), acid phosphatase (S-ACP) and organic matter (SOM) in soil. These results suggest that soil enzyme activities are more sensitive than soil nutrient status, and could be used as indicators of non-point source pollution assessing. Moreover, pollution in this area could be effectively controlled by enhancing vegetation coverage and ameliorating soil environment.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , China , Environmental Monitoring , Nitrogen , Phosphorus , Soil , Water , Water Pollution
SELECTION OF CITATIONS
SEARCH DETAIL