ABSTRACT
Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.
Subject(s)
Fertility , MicroRNAs , Temperature , Cytoplasm/genetics , Fertility/genetics , Indoleacetic Acids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hormones/metabolism , Pollen/genetics , Pollen/metabolism , Gene Expression Regulation, Plant , Gene Expression ProfilingABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese medicine, Euodiae Fructus (EF) has been used to treat stomachache, belching, and emesis for more than a thousand years. Ancient records and modern research have shown that EF has mild toxicity, which needs to be processed with licorice juice to reduce its toxicity. Research suggested that the toxicity of EF can be caused by in vivo metabolism, but whether its metabolites are related to hepatotoxicity and whether licorice can affect the metabolism of EF have not been reported, which needed an effective strategy to clarify the correlation between metabolites and toxicity and the attenuation mechanism of licorice processing. AIM OF THE STUDY: The poisonous substances and metabolic pathways were clarified by comparing the mechanism in vivo process of the main alkaloids of EF in normal rats and rats treated with dexamethasone (DXMS), ketoconazole (KTC), and EF processed with licorice (EFP). MATERIALS AND METHODS: Rats were given EF and EFP by oral administration, respectively. The EF + DXMS and EF + KTC groups were pretreated with DXMS and KTC, respectively, by i. p. for seven days, and their toxicity differences were compared. The comprehensive strategy based on UPLC-Q-Exactive-MS and Orthogonal Partial Least Squares Discriminant Analysis was developed to compare the types and contents of metabolites and clarify the metabolic pathways of alkaloids among EF, EFP, EF + KTC, and EF + DXMS groups. RESULTS: EF + DXMS group significantly increased the hepatotoxicity, whereas the EF + KTC and EFP groups reduced the hepatotoxicity compared with the EF group. One hundred and thirty-five metabolites were detected, and the metabolic pathways of the main alkaloid components related to toxicity were inferred in the plasma, urine, feces, and bile of rats. KTC and licorice similarly inhibited the production of toxic metabolites, changed metabolism in vivo, and produced many new II and a few phases I metabolites, while the contents of toxic metabolites increased in the DXMS group. CONCLUSION: Licorice and KTC could inhibit the production of metabolites of EF related to toxicity, increase the production of other metabolites and promote the excretion of alkaloids, which may be why licorice and KTC can minimize EF toxicity.
Subject(s)
Alkaloids , Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Glycyrrhiza , Rats , Animals , Cytochrome P-450 CYP3A Inhibitors , Cytochrome P-450 CYP3A Inducers , Alkaloids/toxicity , Drugs, Chinese Herbal/toxicity , Ketoconazole , Chemical and Drug Induced Liver Injury/etiology , Chromatography, High Pressure LiquidABSTRACT
A selective electrochemical biosensor was developed for detecting carbendazim (CBZ) based on well-dispersed colloidal boron nitride (BN) nanocrystals and gold nanoparticles (Au NPs). BN was synthesized by "solvent cutting" to modify a glassy carbon electrode (GCE), and Au NPs were then electrodeposited. A single-stranded oligonucleotide with methylene blue (MB) was modified to the electrode surface through gold-sulfur bonds. A double-stranded DNA was formed in the presence of an aptamer. The aptamer chain can specifically bind to the target CBZ. When the aptamer binds to CBZ, the electroactive substance MB labeled at one end of the complementary chain can effectively contact the electrode surface. Detection of CBZ is realized by simultaneously monitoring the MB signal enhancement. The CBZ concentration was determined in a wide linearity range from 0.1 ng mL-1 to 100 µg mL-1, with a low detection limit of 0.019 ng mL-1. This biosensor exhibited excellent selectivity and acceptable repeatability and was applied in cucumber, kiwifruit, and water samples with good recoveries, demonstrating that the strategy has remarkable potential and offers a good platform for CBZ detection.
ABSTRACT
Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to introduce it. This review summarizes known TLC bioautography types and practical applications for determining antibacterial, antifungal, antitumor and antioxidant compounds and for inhibiting glucosidase, pancreatic lipase, tyrosinase and cholinesterase activity constitutes. Nowadays, especially during the COVID-19 pandemic, it is important to identify original, natural products with anti-COVID potential compounds from Chinese traditional medicine and natural medicinal plants. We also give an account of detection techniques, including in situ and ex situ techniques; even in situ ion sources represent a major reform. Considering the current technical innovations, we propose that the technology will make more progress in TLC plates with higher separation and detection technology with a more portable and extensive scope of application. We believe this technology will be diffusely applied in medicine, biology, agriculture, animal husbandry, garden forestry, environmental management and other fields in the future.
Subject(s)
Chromatography, Thin Layer/methods , Drug Discovery/methods , Luminescent Measurements/methods , Animals , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Antioxidants/isolation & purification , Enzyme Inhibitors/isolation & purification , Humans , Microbial Sensitivity Tests/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Sensitivity and SpecificityABSTRACT
Background: The ongoing COVID-19 pandemic has brought significant challenges to health system and consumed a lot of health resources. However, evidence on the hospitalization costs and their associated factors in COVID-19 cases is scarce. Objectives: To describe the total and components of hospitalization costs of COVID-19 cases, and investigate the associated factors of costs. Methods: We included 876 confirmed COVID-19 cases admitted to 33 designated hospitals from January 15th to April 27th, 2020 in Guangdong, China, and collected their demographic and clinical information. A multiple linear regression model was performed to estimate the associations of hospitalization costs with potential associated factors. Results: The median of total hospitalization costs of COVID-19 cases was $2,869.4 (IQR: $3,916.8). We found higher total costs in male (% difference: 29.7, 95% CI: 15.5, 45.6) than in female cases, in older cases than in younger ones, in severe cases (% difference: 344.8, 95% CI: 222.5, 513.6) than in mild ones, in cases with clinical aggravation than those without, in cases with clinical symptoms (% difference: 47.7, 95% CI: 26.2, 72.9) than those without, and in cases with comorbidities (% difference: 21.1%, 21.1, 95% CI: 4.4, 40.6) than those without. We also found lower non-pharmacologic therapy costs in cases treated with traditional Chinese medicine (TCM) therapy (% difference: -47.4, 95% CI: -64.5 to -22.0) than cases without. Conclusion: The hospitalization costs of COVID-19 cases in Guangdong were comparable to the national level. Factors associated with higher hospitalization costs included sex, older age, clinical severity and aggravation, clinical symptoms and comorbidities at admission. TCM therapy was found to be associated with lower costs for some non-pharmacologic therapies.
ABSTRACT
Chinese Traditional Medicines (CTMs) are very popular for therapeutic applications to cure several chronic diseases. Many researchers are trying to discover the potential application and actual mechanism of CTMs in order to scientifically prove their effects for commercial use. One of the main functions of CTMs is to aid stem cell regeneration. Since, this study was focused to fabricate CTMs incorporated fish collagen film, which has good biocompatibility in mammalian cell growth and thus investigated the effect on human Mesenchymal stem cells (hMSCs) proliferation and differentiation. In this study, three types of CTMs such as Genistein, Icariin, and Naringin were used for film fabrication. Mechanical properties of collagen films were improved by the addition of CTMs, especially in Collagen-Naringin films. Solubility and In-vitro biodegradation of collagen films were enhanced by the hydrophobicity and chemical interaction of CTMs with collagen. The proliferation rate was accelerated in hMSCs cultured on CTMs incorporated collagen films in a dose- and time-dependent manner. Proliferation biomarkers such as Ki-67 and BrdU levels were higher in hMSCs cultured on CTMs incorporated collagen films. The proliferative and differentiation effect of CTMs was further confirmed by higher gene expression of Collagen I, Runx2, c-Fos, SMAD3 and TGF-ß1 in hMSCs. Overall, this study provides a new insight on novel biomaterial fabrication using CTMs and fish collagen for making a compatible platform for in-vitro stem cell culture.
Subject(s)
Biocompatible Materials/chemistry , Bone Marrow Cells , Collagen/chemistry , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Mesenchymal Stem Cells , Animals , Cell Differentiation/drug effects , Cell Line , Cell Proliferation , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Flavanones/administration & dosage , Flavanones/chemistry , Flavonoids/administration & dosage , Flavonoids/chemistry , Genistein/administration & dosage , Genistein/chemistry , Humans , UrodelaABSTRACT
Collagen is widely used for dental therapy in several ways such as films, 3D matrix, and composites, besides traditional Chinese medicine (TCM), has been used in tissue regeneration and wound healing application for centuries. Hence, the present study was targeted for the first time to fabricate collagen film with TCM such as resveratrol and celastrol in order to investigate the human periodontal ligament fibroblasts (HPLF) growth and bone marrow macrophages (BMM) derived osteoclastogenesis. Further, the physicochemical, mechanical and biological activities of collagen-TCM films crosslinked by glycerol and EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysulfosuccinimide) were investigated. Collagen film characterization was significantly regulated by the nature of plasticizers like hydrophobic and degree of polarity. Interestingly, the collagen film's denaturation temperature was increased by EDC-NHS than glycerol. FT-IR data confirmed the functional group changes due to chemical interaction of collagen with TCM. Morphological changes of HPLF cells cultured in control and collagen films were observed by SEM. Importantly, the addition of resveratrol upregulated the proliferation of HPLF cells, while osteoclastogenesis of BMM cells treated with mCSF-RANKL was significantly downregulated by celastrol. Accordingly, the collagen-TCM film could be an interesting material for dental regeneration, and especially it is a therapeutic target to restrain the elevated bone resorption during osteoporosis.
Subject(s)
Antioxidants/pharmacology , Collagen/pharmacology , Dental Implants , Pentacyclic Triterpenes/pharmacology , Periodontal Ligament/drug effects , Resveratrol/pharmacology , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Bone Marrow/drug effects , Bone Marrow/pathology , Cell Proliferation/drug effects , Cells, Cultured , Collagen/chemistry , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Macrophages/drug effects , Macrophages/pathology , Molecular Structure , Osteogenesis/drug effects , Pentacyclic Triterpenes/chemistry , Periodontal Ligament/pathology , Picrates/antagonists & inhibitors , Resveratrol/chemistry , Structure-Activity RelationshipABSTRACT
With a long history of application in Chinese traditional medicine, berberine (BBR) was reported to exhibit healthspan-extending properties in some age-related diseases, such as type 2 diabetes and atherosclerosis. However, the antiaging mechanism of BBR is not completely clear. By means of hydrogen peroxide- (H2O2-) induced premature cellular senescence model, we found that a low-concentration preconditioning of BBR could resist premature senescence in human diploid fibroblasts (HDFs) measured by senescence-associated ß-galactosidase (SA-ß-gal), accompanied by a decrease in loss of mitochondrial membrane potential and production of intracellular reactive oxygen species (ROS). Moreover, the low-concentration preconditioning of BBR could make cells less susceptible to subsequent H2O2-induced cell cycle arrest and growth inhibition. Experimental results further showed that the low concentration of BBR could induce a slight increase of ROS and upregulate the expression level of sirtuin 1 (SIRT1), an important longevity regulator. H2O2-induced activation of checkpoint kinase 2 (Chk2) was significantly attenuated after the preconditioning of BBR. The present findings implied that the low-concentration preconditioning of BBR could have a mitohormetic effect against cellular senescence triggered by oxidative stress in some age-related diseases through the regulation of SIRT1.