Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542459

ABSTRACT

The lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that play an important role in plant growth and defense responses. There is scarce knowledge regarding the LOX gene family members and their involvement in biotic and abiotic stresses in potato. In this study, a total of 17 gene family members (StLOXs) in potato were identified and clustered into three subfamilies: 9-LOX type I, 13-LOX type I, and 13-LOX type II, with eleven, one, and five members in each subfamily based on phylogenetic analysis. By exploiting the RNA-seq data in the Potato Genome Sequencing Consortium (PGSC) database, the tissue-specific expressed and stress-responsive StLOX genes in double-monoploid (DM) potato were obtained. Furthermore, six candidate StLOX genes that might participate in drought and salt response were determined via qPCR analysis in tetraploid potato cultivars under NaCl and PEG treatment. Finally, the involvement in salt stress response of two StLOX genes, which were significantly up-regulated in both DM and tetraploid potato under NaCl and PEG treatment, was confirmed via heterologous expression in yeast under salt treatment. Our comprehensive analysis of the StLOX family provides a theoretical basis for the potential biological functions of StLOXs in the adaptation mechanisms of potato to stress conditions.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Phylogeny , Tetraploidy , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling
2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396758

ABSTRACT

The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.


Subject(s)
Anthocyanins , Solanum tuberosum , Anthocyanins/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
J Ethnopharmacol ; 285: 114905, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34896205

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tongue coating has been used as an effective signature of health in traditional Chinese medicine (TCM). The level of greasy coating closely relates to the strength of dampness or pathogenic qi in TCM theory. Previous empirical studies and our systematic review have shown the relation between greasy coating and various diseases, including gastroenteropathy, coronary heart disease, and coronavirus disease 2019 (COVID-19). However, the objective and intelligent greasy coating and related diseases recognition methods are still lacking. The construction of the artificial intelligent tongue recognition models may provide important syndrome diagnosis and efficacy evaluation methods, and contribute to the understanding of ethnopharmacological mechanisms based on TCM theory. AIM OF THE STUDY: The present study aimed to develop an artificial intelligent model for greasy tongue coating recognition and explore its application in COVID-19. MATERIALS AND METHODS: Herein, we developed greasy tongue coating recognition networks (GreasyCoatNet) using convolutional neural network technique and a relatively large (N = 1486) set of tongue images from standard devices. Tests were performed using both cross-validation procedures and a new dataset (N = 50) captured by common cameras. Besides, the accuracy and time efficiency comparisons between the GreasyCoatNet and doctors were also conducted. Finally, the model was transferred to recognize the greasy coating level of COVID-19. RESULTS: The overall accuracy in 3-level greasy coating classification with cross-validation was 88.8% and accuracy on new dataset was 82.0%, indicating that GreasyCoatNet can obtain robust greasy coating estimates from diverse datasets. In addition, we conducted user study to confirm that our GreasyCoatNet outperforms TCM practitioners, yet only consuming roughly 1% of doctors' examination time. Critically, we demonstrated that GreasyCoatNet, along with transfer learning, can construct more proper classifier of COVID-19, compared to directly training classifier on patient versus control datasets. We, therefore, derived a disease-specific deep learning network by finetuning the generic GreasyCoatNet. CONCLUSIONS: Our framework may provide an important research paradigm for differentiating tongue characteristics, diagnosing TCM syndrome, tracking disease progression, and evaluating intervention efficacy, exhibiting its unique potential in clinical applications.


Subject(s)
COVID-19 , Diagnostic Techniques and Procedures , Ethnopharmacology/methods , Medicine, Chinese Traditional/methods , Tongue , Artificial Intelligence , COVID-19/diagnosis , COVID-19/therapy , Humans , Neural Networks, Computer , Outcome Assessment, Health Care/methods , Qi , SARS-CoV-2 , Tongue/microbiology , Tongue/pathology
4.
Pharmacol Res ; 163: 105244, 2021 01.
Article in English | MEDLINE | ID: mdl-33053440

ABSTRACT

Diabetic erectile dysfunction (DED) hugely affected the patients' sexual life quality. However, there are no satisfactory therapeutic methods and intervention targets for this subtype of erectile dysfunction (ED). Inspired by the clinical practice of traditional Chinese medicine (TCM), we found that hirudin, the main active ingredient in the leech, could ameliorate the ED symptoms of the DED mouse model. To further reveal the underlying mechanism of hirudin, we designed a novel strategy to discover potential targets based on the diagnostic system of TCM, and found that myeloperoxidase (MPO) was a promising target of hirudin. Hirudin directly interacts with MPO and inhibits its activity, thus further decreases the content of oxidized low-density lipoprotein (ox-LDL) in serum. Our results demonstrated that the hirudin could ameliorate the symptoms of DED, and revealed the underlying mechanism of hirudin in regulating the activity of MPO.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Erectile Dysfunction/drug therapy , Hirudin Therapy , Animals , Artificial Intelligence , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Erectile Dysfunction/etiology , Erectile Dysfunction/genetics , Erectile Dysfunction/metabolism , Hirudins/pharmacology , Male , Medicine, Chinese Traditional , Mice, Inbred C57BL , Peroxidase/antagonists & inhibitors , Peroxidase/metabolism , Transcriptome
5.
Front Pharmacol ; 11: 946, 2020.
Article in English | MEDLINE | ID: mdl-32670064

ABSTRACT

INTRODUCTION: The fundamental theory of traditional Chinese medicine (TCM) implies that when different diseases have the same pathogen, the syndromes of these individual diseases will be the same. "Treating different diseases with the same method" is a TCM principle suggesting that when different diseases have similar pathological changes during different stages of their development, the same method of treatment can be applied. Our study aims to analyze the concept "treating different diseases with the same method" from a molecular perspective, in order to clarify its biological basis and to objectively standardize future TCM syndrome research. OBJECTIVE: The TCM syndromes Qi deficiency and blood stasis have similar pathogenesis in relation to coronary heart disease (CHD) and stroke. We aim to use big data technology and complex network theory to mine the genes specifically relevant to these TCM syndromes. This study aims to explore the correlation between the biological indicators of CHD and stroke from a scientific perspective. METHODS: Mining the relevant neuroendocrine-immune (NEI) genes by means of gene entity recognition, complex network construction, network integration, and decomposition to categorize relevant syndrome terms and establish a digital dictionary of gene specifically related to individual diseases. We analyzed the biological basis of "treating different diseases with the same method" from a molecular level using the TCMIP v2.0 platform in order to categorize the TCM syndromes most relevant to CHD and stroke. RESULTS: We found 46 genes were involved in the TCM syndromes of Qi deficiency and blood stasis of CHD and stroke. The same genes and their molecular mechanism also appeared to be in close relation to inflammatory response, apoptosis, and proliferation. CONCLUSION: By using information extraction and complex network technology, we discovered the biological indicators of the TCM syndromes Qi deficiency and blood stasis of CHD and stroke. In the era of big data, our results can provide a new method for the researchers of TCM syndrome differentiation, as well as an effective and specific methodology for standardization of TCM.

6.
Environ Sci Pollut Res Int ; 25(14): 13579-13588, 2018 May.
Article in English | MEDLINE | ID: mdl-29497941

ABSTRACT

The phosphorus (P) release from bloom-cyanobacterium during its decline period is one of the most important parts involved in lake P-biogeochemical cycle, which is an important nutrient self-regulating process to sustain eutrophic status in lakes. An in situ experiment was set up to study the phosphorus release mechanisms of cyanobacterial blooms in Dianchi Lake during its decline period. In the enclosure, the cyanobacteria were dying out gradually and this process further affected the water quality parameters and lead to P release from bloom-cyanobacteria. The pH and electric conductivity (EC) increased substantially, while the redox potential (ORP) decreased during the whole experimental period. Among all the released P forms, the orthophosphate (ortho-P) was the main released P form and accounted for 96.7 and 67.8% of the total phosphorus (TP) increment in the water and the TP reduction in algae respectively. According to the TP in sediment and lost P of overlying water column, it could be concluded that the ortho-P released from algae was absorbed by sediment as well. The release of TP, organic P (OP), and ortho-P from bloom-cyanobacteria all followed the first-order kinetics, and the release rate of ortho-P was much higher than that of OP (p < 0.05). Furthermore, according to the total extracellular polysaccharide (EPS) determination and related Pearson's correlation analysis, the release of TP and ortho-P from bloom-cyanobacteria would probably depend on the reduction of capsular polysaccharide (CPS) and colonial sheath disaggregation. In conclusion, a large amount of ortho-P was released and adsorbed by sediment gradually during cyanobacterial bloom decline period, and these bioavailable P could provide the sufficient nutrient for newborn cyanobacteria and could contribute to the construction of a new internal P cycle among sediment, water, and cyanobacterial bloom.


Subject(s)
Lakes/microbiology , Phosphates/analysis , Phosphorus/analysis , China , Cyanobacteria , Phosphates/chemistry , Water Quality
7.
Water Sci Technol ; 74(2): 416-23, 2016.
Article in English | MEDLINE | ID: mdl-27438246

ABSTRACT

Straws of four ornamental flowers (carnation, rose, lily, and violet) were added into denitrification biofilters using gravel as matrix through vertically installed perforated polyvinylchloride pipes to provide organic carbon for the treatment of nitrate-contaminated wastewater operating in batch mode. Removal efficiencies of nitrate and phosphate, as well as temporal variations of nitrogen and carbon during batches 10 and 19, were investigated and assessed. Nitrate removal was efficiently enhanced by the addition of flower straws, but decreased gradually as the organic substances were consumed. Phosphate removal was also improved, although this very limited. High nitrate removal rates were achieved during the initial 12 h in the two batches each lasting for 3 days, along with the depletion of influent dissolved oxygen due to aerobic degradation of the organic compounds. NO2(-)-N of 0.01-2.83 mg/L and NH4(+)-N of 0.02-1.69 mg/L were formed and both positively correlated to the nitrate reduced. Inorganic carbon (IC) concentrations increased during the batches and varied conversely with the nitrate contents, and could be indicative of nitrate removal due to the highly significant positive correlation between NO3(-)-N removed and IC concentration (r(2) = 0.881, p < 0.0001). It is feasible and economical to use the denitrification biofilter to treat nitrate-contaminated wastewater, although further optimization of carbon source addition is still required.


Subject(s)
Carbon/metabolism , Denitrification , Nitrates/metabolism , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/metabolism , Dianthus , Filtration/instrumentation , Filtration/methods , Lilium , Plant Leaves/metabolism , Plant Stems/embryology , Rosa , Violaceae , Waste Disposal, Fluid/instrumentation
8.
Mol Med Rep ; 11(3): 2125-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25394789

ABSTRACT

Berberine is a well­known component of the Chinese herbal medicine Huanglian (Coptis chinensis), and is capable of inhibiting the proliferation of multiple cancer cell lines. However, information available regarding the effect of berberine on prostate cancer cell growth is limited. In the present study, LnCaP and PC­3 human prostate cancer cell lines were selected as in vitro models in order to assess the efficacy of berberine as an anticancer agent. A cell proliferation assay demonstrated that berberine inhibited cell growth in a dose­and time­dependent manner. Further investigation revealed berberine significantly accumulated inside cells that were in the G1 phase of the cell cycle and enhanced apoptosis. Western blot analysis demonstrated that berberine inhibited the expression of prostate­specific antigen and the activation of epidermal growth factor receptor (EGFR), and it attenuated EGFR activation following EGF treatment in vitro. In conclusion, the results indicate that berberine inhibits the proliferation of prostate cancer cells through apoptosis and/or cell cycle arrest by inactivation of the EGFR signaling pathway.


Subject(s)
Berberine/pharmacology , ErbB Receptors/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Epidermal Growth Factor/drug effects , Epidermal Growth Factor/metabolism , Gene Expression , Humans , Male , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL