Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Curr Pharm Des ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38523541

ABSTRACT

BACKGROUND: The traditional Chinese medicine formula, Yu's Enema Formula (YEF), has demonstrated potential in the treatment of Ulcerative Colitis (UC). OBJECTIVE: This study aimed to unveil the anti-UC mechanisms of YEF. METHODS: Utilizing public databases, we obtained YEF and UC-related targets. GO and KEGG analyses were conducted via clusterProfiler and Reactome. The STRING database facilitated the construction of the PPI network, and hub targets were selected using cytoHubba. We used R software for differential expression and correlation analyses, and molecular docking was performed with PyMOL and AutoDock. HPLC analysis identified the compounds in YEF. For in vivo validation, a UC rat model was employed. RESULTS AND DISCUSSION: 495 YEF-UC overlapping targets were identified. GO and KEGG analyses indicated enrichment in exogenous stimuli response, peptide response, positive MAPK cascade regulation, interleukin- related signaling, and the TLR4 cascade. Hub targets included CTNNB1, JUN, MAPK1, MAPK3, SRC, STAT3, TLR4, TP53, and RELA, which were often interconnected. Molecular docking revealed quercetin's strong binding affinity with CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, consistent with HPLC analysis. In vivo experiments suggested that YEF has the potential to alleviate UC symptoms and protect the intestinal mucosal barrier by inhibiting the RhoA/ROCK pathway. CONCLUSION: YEF may safeguard the intestinal mucosal barrier in UC by targeting CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, while blocking the RhoA/ROCK pathway.

2.
Chin J Integr Med ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386252

ABSTRACT

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.

3.
Chin Med ; 18(1): 145, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37924136

ABSTRACT

BACKGROUND: Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS: The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 µg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS: LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION: LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.

4.
Sci Rep ; 13(1): 14195, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648691

ABSTRACT

Over recent decades, there has been a severe nitrogen-deposition in alpine meadows which often leads to phosphorus limitation of plant productivity. In these high-altitude localities, Cyperaceae have an increasing biomass while other functional groups decrease. Meanwhile, Cyperaceae are known to have the ability of producing dauciform roots, which are formed under phosphorus limitation, but in China, are only described in these high-altitude places. So, is the superiority of Cyperaceae and the formation of dauciform roots in high-altitude localities related to the accumulation of nitrogen? And is there a link between them? A Carex filispica dominated community in Baima Snow Mountain was selected and quantitative fertilization with four levels of nitrogen and three levels of phosphorus was performed. After 2 weeks, Carex filispica individuals with and without dauciform roots were separated and analyzed for their regular root properties, dauciform root properties, biomass and chemical traits of above- and belowground parts. The total cover of the community declined under phosphorus limitation with increasing nitrogen supply, while the relative cover difference of Carex filispica increased with increasing nitrogen supply and decreased with increasing phosphorus supply. Dauciform roots had a more significant response to nitrogen supply than to phosphorus supply and they were formed the most at a low supply of nitrogen. The biomass and root properties of individuals with dauciform roots were enhanced by nitrogen supply and inhibited by phosphorus supply, while those of individuals without dauciform roots were often enhanced by phosphorus supply. Individuals with and without dauciform roots showed two different mechanisms, and were limited by significantly different factors, which can explain the opposite performance of Cyperaceae after nitrogen and phosphorus supply in previous studies.


Subject(s)
Carex Plant , Cyperaceae , Humans , Grassland , Nitrogen , Phosphorus , Fertilization
5.
Blood Sci ; 5(3): 170-179, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37546705

ABSTRACT

Adoptive cell therapy (ACT) has emerged with remarkable efficacies for tumor immunotherapy. Chimeric antigen receptor (CAR) T cell therapy, as one of most promising ACTs, has achieved prominent effects in treating malignant hematological tumors. However, the insufficient killing activity and limited persistence of T cells in the immunosuppressive tumor microenvironment limit the further application of ACTs for cancer patients. Many studies have focused on improving cytotoxicity and persistence of T cells to achieve improved therapeutic effects. In this study, we explored the potential function in ACT of ginsenoside Rg1, the main pharmacologically active component of ginseng. We introduced Rg1 during the in vitro activation and expansion phase of T cells, and found that Rg1 treatment upregulated two T cell activation markers, CD69 and CD25, while promoting T cell differentiation towards a mature state. Transcriptome sequencing revealed that Rg1 influenced T cell metabolic reprogramming by strengthening mitochondrial biosynthesis. When co-cultured with tumor cells, Rg1-treated T cells showed stronger cytotoxicity than untreated cells. Moreover, adding Rg1 to the culture endowed CAR-T cells with enhanced anti-tumor efficacy. This study suggests that ginsenoside Rg1 provides a potential approach for improving the anti-tumor efficacy of ACT by enhancing T cell effector functions.

6.
Phytomedicine ; 114: 154802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37054486

ABSTRACT

BACKGROUND: A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS: To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS: The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION: GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ethanol , Mice , Animals , Ethanol/pharmacology , Kaempferols/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/pathology , Mice, Inbred ICR , Liver , Mitogen-Activated Protein Kinase Phosphatases/pharmacology , p38 Mitogen-Activated Protein Kinases
7.
Chin J Integr Med ; 29(7): 608-616, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36959433

ABSTRACT

OBJECTIVE: To investigate the effects of Tongxinluo (TXL) on thromboangiitis obliterans (TAO) and the underlying mechanisms. METHODS: Ninety male C57/BL6J mice were randomly divided into 6 groups according to a random number table: the sham group, TAO model group, Compound Danshen Tablet (CDT) group, and the high-, medium-, and low-dose TXL groups. All mice except the sham group were injected with sodium laurate (0.1 mL, 5 mg/mL) in the femoral artery to establish TAO mouse model. After modeling, mice in the sham and TAO model groups were intragastrically administered 0.5% (w/v) sodium carboxymethylcellulose, mice in the CDT group were intragastrically administered 0.52 g/kg CDT, and mice in the TXL-H, TXL-M, and TXL-L groups were intragastrically administered 1.5, 0.75, and 0.38 g/kg TXL, respectively. After 4 weeks of gavage, the recovery of blood flow in the lower limbs of mice was detected by Laser Doppler Imaging. The pathological changes and thrombosis of the femoral artery were observed by morphological examination. The expressions of tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in the femoral artery wall were detected by HE staining. Levels of thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α), endothelin-1 (ET-1), interleukin (IL)-1ß and IL-6 were measured using enzyme-linked immunosorbent assay (ELISA). Levels of activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen (FIB) were detected by a fully automated biochemical analyzer. RESULTS: TXL promoted the restoration of blood flow in the lower limbs, reduced the area of thrombosis in the femoral artery, and alleviated the pathological changes in the femoral artery wall. Moreover, the levels of TXB2, ET-1, IL-6, IL-1ß, TNF-α and iNOS were significantly lower in the TXL groups compared with the model group (P<0.05 or P<0.01), while the level of 6-keto-PGF1α was significantly higher (P<0.01). In addition, APTT, PT, and TT were significantly prolonged in TXL groups compared with the model group (P<0.05 or P<0.01), and FIB levels were significantly decreased compared with the model group (P<0.01). CONCLUSIONS: TXL had a protective effect on TAO mice, and the mechanism may involve inhibition of thrombosis and inflammatory responses. TXL may be a potential drug for the treatment of TAO.


Subject(s)
Thromboangiitis Obliterans , Thrombosis , Mice , Male , Animals , Thromboangiitis Obliterans/drug therapy , Thromboangiitis Obliterans/chemically induced , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Article in English | MEDLINE | ID: mdl-36777628

ABSTRACT

Background: Qiliqiangxin (QLQX) capsules are a commonly used proprietary Chinese medicine for the adjuvant treatment of chronic heart failure (CHF) in China. In recent years, several randomized controlled trials (RCTs) have reported on the efficacy and safety of QLQX combined with sacubitril/valsartan for CHF. Objective: The purpose of this study was to systematically analyze the clinical efficacy and safety of QLQX combined with sacubitril/valsartan in the management of CHF and to provide clinicians as well as scientists with optimal evidence-based medical evidence. Methods: We searched RCTs to evaluate the efficacy and safety of QLQX combined with sacubitril/valsartan in the treatment of CHF in the Wanfang Database, China National Knowledge Infrastructure, China Science and Technology Journal Database, PubMed, Embase, and Cochrane Library databases from their inception until January 8, 2022. RCTs on QLQX in combination with sacubitril/valsartan for CHF were included. The outcome measures considered were total effective rate, left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD), 6-minute walking distance (6-MWD), and adverse events. The quality of the included RCTs was assessed thereafter using the Cochrane risk of bias tool. RevMan 5.3 software was used to conduct the meta-analysis. Results: The meta-analysis included 17 trials involving 1427 CHF patients. The results indicated that with sacubitril/valsartan administration combined with QLQX treatment, the total effective rate (relative risk (RR) = 1.24; 95% confidence interval (CI) (1.17, 1.31); p < 0.01), LVEF (mean difference (MD) = 6.20; 95% CI (5.36, 7.05; p < 0.01)), and 6-MWD (MD = 55.87; 95% CI (40.66, 71.09); p < 0.01) of CHF patients were significantly increased, and the LVEDD value of CHF patients was noted to be significantly reduced (MD = -3.98; 95% CI (-4.47, -3.48); p < 0.01). Moreover, there was no increase in the number of adverse events during treatment (RR = 0.67; 95% CI (0.33, 1.34); p < 0.01). Conclusions: This study indicated that in CHF patients, on the basis of sacubitril/valsartan treatment, combination with QLQX can potentially enhance the total effective rate, improve LVEF and 6-MWD, and reduce LVEDD values, with good safety. However, considering the poor quality of the included studies, a multicenter, randomized, double-blind controlled study is needed for further confirmation.

9.
Phytomedicine ; 109: 154572, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610164

ABSTRACT

BACKGROUND: Melanoma is an aggressive malignancy with a high mortality rate. Signal transducer and activator of transcription 3 (STAT3), an oncoprotein, is considered as an effective target for treating melanoma. Chrysoeriol is a flavonoid compound, and possesses anti-tumor activity in lung cancer, breast cancer and multiple myeloma; while whether it has anti-melanoma effects is still not known. Chrysoeriol has been shown to restrain STAT3 signaling in an inflammation mouse model. PURPOSE: In this study, the anti-melanoma effects of chrysoeriol and the involvement of STAT3 signaling in these effects were investigated. STUDY DESIGN AND METHODS: CCK8 assays, 5-ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/PI staining, Western blot analyses of cleaved caspase-9 and wound healing assays were used to study the anti-melanoma effects of chrysoeriol in cell models. A B16F10 melanoma bearing mouse model was used to evaluate the in vivo anti-melanoma effects of chrysoeriol. Indicators of cell proliferation, cell apoptosis and angiogeneis in melanoma tissues were detected by immunohistochemistry (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immune cells in melanoma tissues were analyzed by flow cytometry. STAT3-overactivated cell models were used to investigate the involvement of STAT3 signaling in the anti-melanoma effects of chrysoeriol. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) assays were conducted to determine whether chrysoeriol binds to Src, an upstream kinase of STAT3. RESULTS: The results of cell experiments showed that chrysoeriol dose-dependently inhibited viability, proliferation and migration of, and induced apoptosis in, A375 and B16F10 melanoma cells. Chrysoeriol inhibited the phosphorylation of STAT3, and downregulated the expression of STAT3-target genes involved in melanoma growth and metastasis. Mouse studies showed that chrysoeriol restrained melanoma growth and tumor-related angiogenesis, and altered compositions of immune cells in melanoma microenvironment. Chrysoeriol also inhibited STAT3 signaling in B16F10 allografts. Chrysoeriol's viability-inhibiting effects were attenuated by over-activating STAT3 in A375 cells. Furthermore, chrysoeriol bound to the protein kinase domain of Src, and suppressed Src phosphorylation in melanoma cells and tissues. CONCLUSION: This study, for the first time, demonstrates that chrysoeriol has anti-melanoma effects, and these effects are partially due to inhibiting STAT3 signaling. Our findings indicate that chrysoeriol has the potential to be developed into an anti-melanoma agent.


Subject(s)
Flavones , Melanoma , Animals , Mice , STAT3 Transcription Factor/metabolism , Signal Transduction , Melanoma/drug therapy , Flavones/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis , Tumor Microenvironment
10.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5306-5315, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472038

ABSTRACT

Based on Janus kinase 1/2-signal transducer and activator of transcription 1(JAK1/2-STAT1) signaling pathway, this study explored the immune mechanism of Maxing Shigan Decoction in alleviating the lung tissue and colon tissue damage in mice infected with influenza virus. The influenza virus infection was induced in mice by nasal drip of influenza virus. The normal group, model group, oseltamivir group, antiviral granule group, and Maxing Shigan Decoction group were designed. After intragastric administration of corresponding drugs or normal saline for 3 or 7 days, the body mass was measured, and lung index, spleen index, and thymus index were calculated. Based on hematoxylin-eosin(HE) staining, the pathological changes of lung tissue and colon tissue were observed. Enzyme-linked immunosorbent assay(ELISA) was used to detect serum levels of inflammatory factors interleukin-8(IL-8) and interferon-γ(IFN-γ), Western blot and real-time quantitative polymerase chain reaction(RT-qPCR) to determine the protein and mRNA levels of JAK1, JAK2, STAT1, interferon regulatory factor 9(IRF9), and IFN-γ in lung tissue and colon tissue. The results showed that after 3 and 7 days of administration, the body mass, spleen index, and thymus index were lower(P<0.05 or P<0.01), and the lung index was higher(P<0.01) in the model group than in the normal group. Moreover, the model group showed congestion, edema, and infiltration of a large number of lymphocytes and macrophages in the lung tissue, irregular structure of colon mucosa, ulceration and shedding of epithelial cells, and infiltration of a large number of inflammatory cells. The model group had higher levels of serum IFN-γ(P<0.01), higher protein and mRNA expression of JAK1, JAK2, STAT1, IRF9, IFN-γ in lung tissue(P<0.05 or P<0.01), higher level of JAK2 protein in colon tissue(P<0.01), and higher protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) than the normal group. Compared with the model group, Maxing Shigan Decoction group had high body mass, spleen index, and thymus index(P<0.05 or P<0.01), low lung index(P<0.05 or P<0.01), and significant alleviation of pathological injury in lung and colon. Moreover, lower serum level of IFN-γ(P<0.05 or P<0.01), protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue(P<0.05 or P<0.01), JAK2 protein level in colon tissue(P<0.01), and protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) were observed in the Maxing Shigan Decoction group than in the model group. After 3 days of administration, the level of serum IL-8 in the model group was significantly higher than that in the normal group(P<0.01), and the level in the Maxing Shigan Decoction group was significantly reduced(P<0.01). In conclusion, Maxing Shigan Decoction can significantly up-regulate body mass, spleen index, and thymus index, down-regulate lung index, reduce the levels of IL-8 and IFN-γ, and down-regulate protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue and protein and mRNA levels of JAK2, STAT1, and IRF9 in colon tissue, and alleviate pathological damage of lung tissue and colon tissue. The mechanism is the likelihood that it inhibits the activation of JAK1/2-STAT1 signaling pathway to alleviate the damage to lung and colon tissue damage.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Mice , Animals , Humans , Janus Kinase 1/genetics , STAT1 Transcription Factor/genetics , Interleukin-8 , Signal Transduction , Interferon-gamma , Lung , RNA, Messenger , Colon
11.
Poult Sci ; 101(9): 102034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35926351

ABSTRACT

Fatty liver hemorrhagic syndrome (FLHS) is a chronic hepatic disease which occurs when there is a disorder in lipid metabolism. FLHS is often observed in caged laying hens and characterized by a decrease in egg production and dramatic increase of mortality. Salidroside (SDS) is an herbal drug which has shown numerous pharmacological activities, such as protecting mitochondrial function, attenuating cell apoptosis and inflammation, and promoting antioxidant defense system. We aimed to determine the therapeutic effects of SDS on FLHS in laying hens and investigate the underlying mechanisms through which SDS operates these functions. We constructed oleic acid (OA)-induced fatty liver model in vitro and high-fat diet-induced FLHS of laying hens in vivo. The results indicated that SDS inhibited OA-induced lipid accumulation in chicken primary hepatocytes, increased hepatocyte activity, elevated the mRNA expression of proliferation related genes PCNA, CDK2, and cyclinD1 and increased the protein levels of PCNA and CDK2 (P < 0.05), as well as decreased the cleavage levels of Caspase-9, Caspase-8, and Caspase-3 and apoptosis in hepatocytes (P < 0.05). Moreover, SDS promoted the phosphorylation levels of PDK1, AKT, and Gsk3-ß, while inhibited the PI3K inhibitor (P < 0.05). Additionally, we found that high-fat diet-induced FLHS hens had heavier body weight, liver weight, and abdominal fat weight, and severe steatosis in histology, compared with the control group (Con). However, hens fed with SDS maintained lighter body weight, liver weight, and abdominal fat weight, as well as normal liver without hepatic steatosis. In addition, high-fat diet-induced FLHS hens had high levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) compared to the Con group, however, in the Model+SDS group, the levels of TC, TG, ALT, and AST decreased significantly, whereas the level of superoxide dismutase (SOD) increased significantly (P < 0.05). We also found that SDS significantly decreased the mRNA expression abundance of PPARγ, SCD, and FAS in the liver, as well as increased levels of PPARα and MTTP, and decreased the mRNA expression of TNF-α, IL-1ß, IL-6, and IL-8 in the Model+SDS group (P < 0.05). In summary, this study showed that 0.3 mg/mL SDS attenuated ROS generation, inhibited lipid accumulation and hepatocyte apoptosis, and promoted hepatocyte proliferation by targeting the PI3K/AKT/Gsk3-ß pathway in OA-induced fatty liver model in vitro, and 20 mg/kg SDS alleviated high-fat-diet-induced hepatic steatosis, oxidative stress, and inflammatory response in laying hens in vivo.


Subject(s)
Fatty Liver , Lipid Metabolism Disorders , Abnormalities, Multiple , Animals , Body Weight , Chickens/genetics , Craniofacial Abnormalities , Diet, High-Fat , Dietary Supplements , Fatty Liver/drug therapy , Fatty Liver/genetics , Fatty Liver/veterinary , Female , Glucosides , Glycogen Synthase Kinase 3/metabolism , Growth Disorders , Heart Septal Defects, Ventricular , Hepatocytes/metabolism , Lipid Metabolism , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/veterinary , Liver/metabolism , Phenols , Phosphatidylinositol 3-Kinases/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , Triglycerides/metabolism
12.
J Ethnopharmacol ; 293: 115251, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35381310

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gastritis can lead to ulcers and the development of gastric cancer. The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), a traditional Chinese medicinal herb, is prescribed for the treatment of gastric disorders, hepatitis and rheumatism. Its bio-active compounds are considered to be particularly effective in this regard. However, the molecular processes of the herb's anti-inflammatory activity remain obscure. This study elucidates a mechanism upon which an ethanolic extract of this herb (Am-EE) exerts anti-inflammation effects in RAW264.7 macrophage cells (RAW cells) stimulated by lipopolysaccharide (LPS) treatment and HCl Ethanol-stimulated gastritis rats. AIM OF THE STUDY: To investigate the anti-gastritis activities of Am-EE and explore the mode of action. MATERIALS AND METHODS: Ethanol (95%) was used to prepare Am-EE. The quality of the extract was monitored by HPLC analysis. The in vivo effects of this extract were examined in an HCl Ethanol-stimulated gastritis rat model, while LPS-stimulated RAW cells were used for in vitro assays. Cell viability and nitric oxide (NO) production were observed by MTT and Griess assays. Real-time PCR was used to examine mRNA expression. The PGE2 ELISA kit was employed to detect prostaglandin E2 (PGE2). Enzyme activities and protein contents were examined by immunoblotting. Luciferase reporter gene assays (LRA) were employed to observe nuclear transcription factor (NF)-κB activity. The SPSS (SPSS Inc., Chicago, Illinois, United States) application was used for statistical examination. RESULTS: HPLC analysis indicates that Am-EE contains atractylenolide-1 (AT-1, 1.33%, w/w) and atractylenolide-2 (AT-2, 1.25%, w/w) (Additional Figure. A1). Gastric tissue damage (induced by HCl Ethanol) was significantly decreased in SD rats following intra-gastric application of 35 mg/kg Am-EE. Indistinguishable to the anti-inflammation effects of 35 mg/kg ranitidine (gastric medication). Am-EE treatment also reduced LPS-mediated nitric oxide (NO) and prostaglandin E2 (PGE2) production. The mRNA and protein synthesis of inducible cyclooxygenase (COX)-2 and NO synthase (iNOS) was down-regulated following treatment in RAW cells. Am-EE decreased NF-κB (p50) nuclear protein levels and inhibited NF-κB-stimulated LRA activity in RAW cells. Lastly, Am-EE decreased the up-regulated levels of phosphorylated IκBα and Akt proteins in rat stomach lysates and in LPS challenged RAW cell samples. CONCLUSION: Our study illustrates that Am-EE suppresses the Akt/IκBα/NF-κB pathway and exerts an anti-inflammatory effect. These novel conclusions provide a pharmacological basis for the clinical use of the A. macrocephala rhizome in the treatment and prevention of gastritis and gastric cancer.


Subject(s)
Atractylodes , Gastritis , Plant Extracts , Stomach Neoplasms , Animals , Anti-Inflammatory Agents/pharmacology , Atractylodes/chemistry , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Ethanol/therapeutic use , Gastritis/chemically induced , Gastritis/drug therapy , Lipopolysaccharides/toxicity , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Rhizome/chemistry , Stomach Neoplasms/drug therapy
14.
BMC Complement Med Ther ; 22(1): 73, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296317

ABSTRACT

BACKGROUND: Fibroblast-like synoviocytes (FLS) have cancer cell-like characteristics, such as abnormal proliferation and resistance to apoptosis, and play a pathogenic role in rheumatoid arthritis (RA). Hyperproliferation of RA-FLS that can be triggered by the activation of interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling destructs cartilage and bone in RA patients. Chrysoeriol is a flavone found in medicinal herbs such as Chrysanthemi Indici Flos (the dried capitulum of Chrysanthemum indicum L.). These herbs are commonly used in treating RA. Chrysoeriol has been shown to exert anti-inflammatory effects and inhibit STAT3 signaling in our previous studies. This study aimed to determine whether chrysoeriol inhibits hyperproliferation of RA-FLS, and whether inhibiting STAT3 signaling is one of the underlying mechanisms. METHODS: IL-6/soluble IL-6 receptor (IL-6/sIL-6R)-stimulated RA-FLS were used to evaluate the effects of chrysoeriol. CCK-8 assay and crystal violet staining were used to examine cell proliferation. Annexin V-FITC/PI double staining was used to detect cell apoptosis. Western blotting was employed to determine protein levels. RESULTS: Chrysoeriol suppressed hyperproliferation of, and evoked apoptosis in, IL-6/sIL-6R-stimulated RA-FLS. The apoptotic effect of chrysoeriol was verified by its ability to cleave caspase-3 and caspase-9. Mechanistic studies revealed that chrysoeriol inhibited activation/phosphorylation of Janus kinase 2 (JAK2, Tyr1007/1008) and STAT3 (Tyr705); decreased STAT3 nuclear level and down-regulated protein levels of Bcl-2 and Mcl-1 that are transcriptionally regulated by STAT3. Over-activation of STAT3 significantly diminished anti-proliferative effects of chrysoeriol in IL-6/sIL-6R-stimulated RA-FLS. CONCLUSIONS: We for the first time demonstrated that chrysoeriol suppresses hyperproliferation of RA-FLS, and suppression of JAK2/STAT3 signaling contributes to the underlying mechanisms. This study provides pharmacological and chemical justifications for the traditional use of chrysoeriol-containing herbs in treating RA, and provides a pharmacological basis for developing chrysoeriol into a novel anti-RA agent.


Subject(s)
Arthritis, Rheumatoid , Flavones , Synoviocytes , Arthritis, Rheumatoid/drug therapy , Fibroblasts , Flavones/pharmacology , Humans , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Synoviocytes/metabolism , Synoviocytes/pathology
15.
J Sci Food Agric ; 102(5): 1883-1893, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34498275

ABSTRACT

BACKGROUND: The high cost of controlled-release urea (CRU) has prompted this study to explore whether the amount of CRU can be reduced by adding biostimulants while maintaining or increasing rice yield. A 2 year field experiment was conducted with CRU at three levels (60%, 80%, and 100% of the recommended nitrogen (N) fertilizer) and a novel biostimulant Paecilomyces variotii extract (ZNC), to investigate their synergistic effects on yield, nitrogen use efficiency (NUE), and net profitability of rice. RESULTS: Controlled-release urea achieved a significantly higher gain yield and NUE than conventional urea with the same N level, which could be attributed to its N supply. Even if the N level of CRU was reduced by 40%, both rice yield and net profit were still significantly higher than for the full amount of urea. Paecilomyces variotii extract sprayed on the surface of CRU at a dose of only 87.5 mL ha-1 exhibited ultra-high effectiveness by increasing the panicles, the N accumulation, and the rice yield. Controlled-release urea enriched by ZNC achieved significantly higher gain yield than CRU alone, increasing the yield by 9.2% and 8.7%, respectively, in 2 years under the full recommended N rate. The combination of 80% CRU and ZNC showed no significant difference in rice yield from treatment with 100% CRU, indicating that the rate of CRU could be reduced by ZNC. The application of ZNC further increased NUE, N partial factor productivity, and net profit. CONCLUSION: The CRU and ZNC combination provided a feasible approach for reducing N input while maintaining rice yield and agricultural sustainability. © 2021 Society of Chemical Industry.


Subject(s)
Oryza , Agriculture , Byssochlamys , Delayed-Action Preparations , Fertilizers/analysis , Nitrogen/analysis , Plant Extracts , Soil , Urea
16.
Biomed Pharmacother ; 145: 112367, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34740097

ABSTRACT

Cardiovascular comorbidities are pervasive in chronic obstructive pulmonary disease (COPD) and often result in serious adverse cardiovascular events. Tongxinluo (TXL) has been clinically verified to treat atherosclerosis (AS), improve lung function and alleviate dyspnoea. The present study aimed to explore the effect of lung microvascular barrier dysfunction on AS in COPD and the potential pulmonary protective mechanisms of TXL in COPD complicated with AS. COPD complicated with AS was induced in mice by cigarette smoke (CS) exposure and high-fat diet (HFD) feeding. The mice were treated with atorvastatin (ATO), TXL or combination therapy (ATO+TXL) for 20 weeks. Pulmonary function, lung pathology, serum lipid levels, atherosclerotic plaque area and indicators of barrier function, oxidative stress and ferroptosis in lung tissue were evaluated. In vitro, human pulmonary microvascular endothelial cells (HPMECs) were pretreated with TXL for 4 h and then incubated with cigarette smoke extract (CSE) and homocysteine (Hcy) for 36 h to induce barrier dysfunction. Then the indicators of barrier function, oxidative stress and ferroptosis were measured. The results demonstrate that CS aggravated dyslipidaemia, atherosclerotic plaque formation, pulmonary function decline, pathological injury, barrier dysfunction, oxidative stress and ferroptosis in the HFD-fed mice. However, these abnormalities were partially reversed by ATO and TXL. Similar results were observed in vitro. In conclusion, pulmonary microvascular barrier dysfunction plays an important role by which COPD affects the progression of AS, and ferroptosis may be involved. Moreover, TXL delays the progression of AS and reduces cardiovascular events by protecting the pulmonary microvascular barrier and inhibiting ferroptosis.


Subject(s)
Atherosclerosis/drug therapy , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Atherosclerosis/pathology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Disease Progression , Ferroptosis/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Oxidative Stress/drug effects , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Pulmonary Disease, Chronic Obstructive/pathology
17.
Phytomedicine ; 88: 153602, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34102522

ABSTRACT

BACKGROUND: Chronic fatigue syndrome (CFS) is a complex disease with few effective and safe therapies. Young Yum Pill (YYP), a proprietary herbal drug, has been used to relieve CFS-like symptoms. The pharmacological basis of this application of YYP is unknown. PURPOSE: This study aimed to investigate the pharmacological effects and mechanisms of action of YYP in a mouse model of CFS. STUDY DESIGN AND METHODS: A food restriction and exhaustive swimming-induced mouse CFS model was used to evaluate the effects of YYP. Lymphocyte proliferation was assessed by MTT assays. T-lymphocyte subsets were analyzed by flow cytometry. Serum biochemical parameters were determined using commercial kits. Protein levels were measured by immunoblotting. RESULTS: Intragastric administration of YYP (2.85, 5.70, 11.40 g/kg) daily for 21 consecutive days significantly prolonged swimming time and diminished body weight loss of CFS mice. Mechanistic investigations revealed that YYP increased thymus and spleen indices of CFS mice, enhanced proliferation of lipopolysaccharide- or concanavalin A-stimulated spleen lymphocytes, and increased CD3+CD4+ and CD3+CD8+ T-cells in the spleen. YYP increased glycogen content in gastrocnemius muscle and liver, and lowered levels of triglyceride, lactic acid and urea nitrogen in sera of CFS mice. YYP suppressed the elevation of serum level of malondialdehyde, the increase of activities of lactic dehydrogenase and creatine phosphokinase, and the decrease of activity of the serum antioxidant enzyme superoxide dismutase in CFS mice. Moreover, YYP upregulated protein level of activated AMPK in gastrocnemius muscle and liver of CFS mice. CONCLUSIONS: YYP ameliorates CFS by reversing metabolic changes, reducing oxidative damage, and improving some immune function parameters in mice. This study provides pharmacological justifications for the use of YYP in treating fatigue, including CFS.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Fatigue Syndrome, Chronic/drug therapy , Oxidative Stress/drug effects , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Fatigue Syndrome, Chronic/immunology , Fatigue Syndrome, Chronic/metabolism , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Mice, Inbred ICR , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/physiology , Superoxide Dismutase/metabolism , Swimming
18.
J Ethnopharmacol ; 277: 114183, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33991638

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The dried rhizome of Atractylodes lancea (Thumb.) DC. (Compositae) has been prescribed in folk medicine for the management of various inflammatory conditions such as rheumatic diseases, gastritis and hepatitis. However, the molecular mechanisms underlying the beneficial properties of this herb remain elusive. AIM OF THE STUDY: In this study, we investigated the anti-gastritis activities of Al-EE (an ethanolic extract of the herb) and explored the mechanism of action. MATERIALS AND METHODS: An ethanolic extract of the Atractylodes lancea (Thumb.) DC. (Compositae) rhizome, Al-EE, was prepared with ethanol (95%) and quality controlled using HPLC analysis. To determine the in vivo effects of this extract, we utilised a HCl/EtOH-induced gastritis rat model. In vitro assays were carried out using a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell model. MTT assays were used to examine cell viability, while Griess assays were carried out to measure nitric oxide (NO) production. Messenger RNA expression was examined by real-time PCR. Prostaglandin E2 (PGE2) production was examined using ELISA assays. To examine protein expression and enzymatic activities, we employed western blot analysis. Nuclear transcription factor (NF)-κB activity was determined by Luciferase reporter assays. RESULTS: The content of atractylenolide (AT)-1 and AT-2 in Al-EE was 0.45% and 5.07% (w/w), respectively (Supplementary Fig. 1). Al-EE treatment suppressed the production of NO and PGE2, reduced the mRNA expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α, while also reducing the protein levels of iNOS and COX-2 in RAW264.7 macrophage cells. Furthermore, Al-EE inhibited the nuclear protein levels of NF-κB (p65) and NF-κB-driven luciferase reporter gene activity in RAW264.7 macrophage cells. Critically, intra-gastric injection of Al-EE (25 mg/kg) attenuated HCl/EtOH-induced gastric damage in SD rats, while the phosphorylation of Akt and IκBα was suppressed by Al-EE in vitro and in vivo. CONCLUSION: In summary, Al-EE has significant anti-gastritis effects in vivo and in vitro, which can be associated with the inhibition of the Akt/IκBα/NF-κB signalling pathway. This mechanistic finding provides a pharmacological basis for the use of the A. lancea rhizome in the clinical treatment of various inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Atractylodes/chemistry , Gastritis/drug therapy , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Ethanol/chemistry , Gastritis/pathology , Lipopolysaccharides , Macrophages/drug effects , Macrophages/pathology , Male , Mice , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Rhizome , Signal Transduction/drug effects
19.
Sci Rep ; 11(1): 3850, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594167

ABSTRACT

Fibroblast-like synoviocytes (FLS) play a pathogenic role in rheumatoid arthritis (RA). STAT3 signaling is activated in FLS of RA patients (RA-FLS), which in turn causes RA-FLS hyperproliferation. RL is a traditional remedy for treating inflammatory diseases in China. It comprises Rosae Multiflorae Fructus and Lonicerae Japonicae Flos. A standardized ethanolic extract of RL (RLE) has been shown to exert anti-arthritic effects in collagen-induced arthritis (CIA) rats. Some constituents of RLE were reported to inhibit JAK2/STAT3 signaling in rat FLS. Here, we determined whether RLE inhibits FLS hyperproliferation, and explored the involvement of STAT3 signaling in this inhibition. In joints of CIA rats, RLE increased apoptotic FLS. In IL-6/sIL-6R-stimulated RA-FLS, RLE reduced cell viability and evoked cell apoptosis. In synovial tissues of CIA rats, RLE lowered the protein level of phospho-STAT3. In IL-6/sIL-6R-stimulated RA-FLS, RLE inhibited activation/phosphorylation of STAT3 and JAK2, decreased the nuclear localization of STAT3, and downregulated protein levels of Bcl-2 and Mcl-1. Over-activation of STAT3 diminished RLE's anti-proliferative effects in IL-6/sIL-6R-stimulated RA-FLS. In summary, RLE inhibits hyperproliferation of FLS in rat and cell models, and suppression of STAT3 signaling contributes to the underlying mechanisms. This study provides further pharmacological groundwork for developing RLE as a modern anti-arthritic drug.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/therapeutic use , Rosa , Synoviocytes/drug effects , Animals , Apoptosis/drug effects , Arthritis, Rheumatoid/metabolism , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/pharmacology , Humans , Interleukin-6 , Lonicera , Phytotherapy , Primary Cell Culture , Rats , STAT3 Transcription Factor/metabolism , Synovial Fluid/metabolism
20.
Leukemia ; 35(6): 1563-1570, 2021 06.
Article in English | MEDLINE | ID: mdl-33077866

ABSTRACT

Safety and efficacy of allogeneic anti-CD19 chimeric antigen receptor T cells (CAR-T cells) in persons with CD19-positive B-cell acute lymphoblastic leukemia (B-ALL) relapsing after an allotransplant remain unclear. Forty-three subjects with B-ALL relapsing post allotransplant received CAR-T cells were analyzed. 34 (79%; 95% confidence interval [CI]: 66, 92%) achieved complete histological remission (CR). Cytokine release syndrome (CRS) occurred in 38 (88%; 78, 98%) and was ≥grade-3 in 7. Two subjects died from multiorgan failure and CRS. Nine subjects (21%; 8, 34%) developed ≤grade-2 immune effector cell-associated neurotoxicity syndrome (ICANS). Two subjects developed ≤grade-2 acute graft-versus-host disease (GvHD). 1-year event-free survival (EFS) and survival was 43% (25, 62%). In 32 subjects with a complete histological remission without a second transplant, 1-year cumulative incidence of relapse was 41% (25, 62%) and 1-year EFS and survival, 59% (37, 81%). Therapy of B-ALL subjects relapsing post transplant with donor-derived CAR-T cells is safe and effective but associated with a high rate of CRS. Outcomes seem comparable to those achieved with alternative therapies but data from a randomized trial are lacking.


Subject(s)
Antigens, CD19/metabolism , Hematopoietic Stem Cell Transplantation/mortality , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Receptors, Chimeric Antigen/immunology , Retrospective Studies , Survival Rate , Tissue Donors , Transplantation, Homologous , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL