Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Pharm Biomed Anal ; 245: 116142, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38631070

ABSTRACT

Traditional Chinese Medicine (TCM) is a supremely valuable resource for the development of drug discovery. Few methods are capable of hunting for potential molecule ligands from TCM towards more than one single protein target. In this study, a novel dual-target surface plasmon resonance (SPR) biosensor was developed to perform targeted compound screening of two key proteins involved in the cellular invasion process of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): the spike (S) protein receptor binding domain (RBD) and the angiotensin-converting enzyme 2 (ACE2). The screening and identification of active compounds from six Chinese herbs were conducted taking into consideration the multi-component and multi-target nature of Traditional Chinese Medicine (TCM). Puerarin from Radix Puerariae Lobatae was discovered to exhibit specific binding affinity to both S protein RBD and ACE2. The results highlight the efficiency of the dual-target SPR system in drug screening and provide a novel approach for exploring the targeted mechanisms of active components from Chinese herbs for disease treatment.


Subject(s)
Angiotensin-Converting Enzyme 2 , Drugs, Chinese Herbal , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Surface Plasmon Resonance , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Ligands , Humans , SARS-CoV-2/drug effects , Protein Binding , Medicine, Chinese Traditional/methods , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , COVID-19/virology , COVID-19 Drug Treatment
2.
J Pharmacol Sci ; 147(1): 9-17, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34294378

ABSTRACT

Schizophrenia is one of the foremost psychological illness around the world, and recent evidence shows that inflammation and oxidative stress may play a critical role in the etiology of schizophrenia. Andrographolide is a diterpenoid lactone from Andrographis paniculate, which has shown anti-inflammation and anti-oxidative effects. In this study, we explored whether andrographolide can improve schizophrenia-like behaviors through its inhibition of inflammation and oxidative stress in Phencyclidine (PCP)-induced mouse model of schizophrenia. We found that abnormal behavioral including locomotor activity, forced swimming and novel object recognition were ameliorated following andrographolide administration (5 mg/kg and 10 mg/kg). Andrographolide inhibited PCP-induced production of inflammatory cytokines, decreased p-p65, p-IκBα, p-p38 and p-ERK1/2 in the prefrontal cortex. Andrographolide significantly declined the level of MDA and GSH, as well as elevated the activity of SOD, CAT and GCH-px. In addition, andrographolide increased expression of NRF-2, HO-1 and NQO-1, promoted nuclear translocation of NRF-2 through blocking the interaction between NRF-2 and KEAP1, which may be associated with directly binding to NRF-2. Furthermore, antioxidative effects and anti-schizophrenia-like behaviors of andrographolide were compromised by the application of NRF-2 inhibitor ML385. In conclusion, these results suggested that andrographolide improved oxidative stress and schizophrenia-like behaviors induced by PCP through increasing NRF-2 pathway.


Subject(s)
Diterpenes/administration & dosage , Diterpenes/pharmacology , Epistasis, Genetic/drug effects , Epistasis, Genetic/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phencyclidine/adverse effects , Phytotherapy , Schizophrenia/drug therapy , Schizophrenia/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Andrographis paniculata/chemistry , Animals , Anti-Inflammatory Agents , Antioxidants , Disease Models, Animal , Diterpenes/isolation & purification , Inflammation , Male , Mice, Inbred ICR , Oxidative Stress/drug effects , Schizophrenia/chemically induced , Schizophrenia/etiology
3.
Fish Shellfish Immunol ; 55: 499-509, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27291351

ABSTRACT

2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) pose a health risk to aquatic organism and humans, and are recognized as persistent priority pollutants. Selenium dependent glutathione peroxidase (Se-GPx) belongs to the family of selenoprotein, which acts mainly as an antioxidant role in the cellular defense system. In the current study, a Se-GPx full length cDNA was cloned from Anodonta woodiana and named as AwSeGPx. It had a characteristic codon at 165TGA167 that corresponds to selenocysteine(Sec) amino acid as U44. The full length cDNA consists of 870 bp, an open reading frame (ORF) of 585 bp encoded a polypeptide of 195 amino in which conserved domain (68LGFPCNQF75) and a glutathione peroxide-1 GPx active site (32GKVILVENVASLUGTT47) were observed. Additionally, the eukaryotic selenocysteine insertion sequence (SECIS) was conserved in the 3'UTR. The AwSeGPx amino acid sequence exhibited a high similarity with that of other Se-GPx. Real-time PCR analysis revealed that AwSeGPx mRNA had a widely distribution, but the highest level was observed in hepatopancreas. AwSeGPx mRNA expression was significantly up-regulated in hepatopancreas, gill and hemocytes after 2,4-DCP, 2,4,6-TCP and PCP exposure. Under similar environment, clams A. woodiana showed a more sensitive to PCP than that of 2,4-DCP and 2,4,6-TCP. These results indicate that AwSeGPx plays a protective role in eliminating oxidative stress derived from 2,4-DCP, 2,4,6-TCP and PCP treatment.


Subject(s)
Anodonta/drug effects , Anodonta/genetics , Glutathione Peroxidase/genetics , Water Pollutants, Chemical/toxicity , Amino Acid Sequence , Animals , Anodonta/metabolism , Base Sequence , Chlorophenols/toxicity , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Glutathione Peroxidase/chemistry , Glutathione Peroxidase/metabolism , Pentachlorophenol/toxicity , Phylogeny , Protein Conformation , Protein Structure, Secondary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Random Allocation , Sequence Alignment
4.
Fish Shellfish Immunol ; 51: 200-210, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26915310

ABSTRACT

Polybrominated diphenyl ethers-47 (PBDE-47) and -209 are significant components of total PBDEs in water and can catalyze the production of reactive oxygen species (ROS) in the organisms. Anti-oxidant enzymes play an important role in scavenging the high level of ROS. In the current study, two full-length cDNAs of Cu/Zn superoxide dismutase (CuZnSODs) and catalase (CAT) were isolated from freshwater bivalve Anodonta woodiana by rapid amplification of cDNA ends approach and respectively named as AwSOD and AwCAT. The nucleotide sequence of AwSOD cDNA had an open reading frame (ORF) of 465 bp encoding a polypeptide of 155 amino acids in which signature 1 GKHGFHVHEFGDNT and signature 2 GNAGARSACGVI of SODs were observed. Deduced amino acid sequence of AwSOD showed a significant similarity with that of CuZnSODs. AwCAT had an ORF 1536 bp encoding a polypeptide of 512 amino acids which contains a conserved catalytic site motif, and a proximal heme-ligand signature motif of CATs. The time-course expressions of AwSOD and AwCAT in hepatopancreas were measured by quantitative real-time PCR. Expressions of AwSOD and AwCAT showed a significant up-regulation in groups at a low concentration treatment of PBDE-47, a biphasic pattern in groups with a high concentration treatment. Administration of PBDE-209 could result in an up-regulation of AwSOD and AwCAT expressions with time- and dose-dependent matter. These results indicate that up-regulations of AwSOD and AwCAT expression of hepatopancreas of freshwater bivalve A. woodiana contribute to eliminate oxidative stress derived from PBDE-47 and -209 treated.


Subject(s)
Anodonta/drug effects , Catalase/genetics , Halogenated Diphenyl Ethers/toxicity , Superoxide Dismutase-1/genetics , Amino Acid Sequence , Animals , Anodonta/genetics , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Fresh Water , Gene Expression/drug effects , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL