Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Publication year range
1.
Transfus Apher Sci ; 62(3): 103702, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37055329

ABSTRACT

Drug-induced nephrolithiasis can arise from insoluble components within medications or crystallization of metabolites due to changes in metabolism and urinary pH. The connection between drugs utilized for iron chelation therapy (ICT) and nephrolithiasis is not well understood. In this report, we describe two pediatric patients diagnosed with nephrolithiasis while undergoing treatment with the chelating agents deferasirox, deferiprone, and deferoxamine for iron overload secondary to repeat blood transfusion.


Subject(s)
Iron Overload , Nephrolithiasis , beta-Thalassemia , Humans , Child , Chelation Therapy/adverse effects , Iron Chelating Agents/adverse effects , Deferasirox/adverse effects , Deferiprone/therapeutic use , Deferoxamine/adverse effects , Benzoates/adverse effects , Triazoles , Iron Overload/drug therapy , Iron Overload/etiology , Nephrolithiasis/chemically induced , Nephrolithiasis/complications , Nephrolithiasis/drug therapy , Iron/therapeutic use , beta-Thalassemia/therapy
2.
Physiol Genomics ; 50(3): 158-168, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29341861

ABSTRACT

Folic acid supplements taken during pregnancy can prevent neural tube defects and other developmental abnormalities. Here, we explored the effects of folate supplementation on gene expression and DNA methylation during C2C12 differentiation. Based on the folic acid concentration, this study comprised three groups: low folate (L), normal folate (N), and high-folate supplement (H). Our analyses revealed that differentiation and the mRNA expression of the gene myogenin in C2C12 cell were enhanced by folic acid; however, the overall methylation percentage in myogenin promoter between different treatment groups was not significantly different ( P > 0.05). The results of MeDIP-chip showed that hundreds of differentially methylated regions (DMRs) were identified between every two groups in both promoter and CpG islands, respectively. Genes with DMRs between N and L groups were mainly enriched in the processes of cell differentiation and cell development, whereas those with DMRs between H and N groups were frequently enriched in cellular process/cycle and cell metabolic processes. In addition, correlation analysis between methylation profile and expression profile revealed that some genes were regulated by methylation status directly. Together, these analyses suggest that folate deficiency and supplementation can influence the differentiation, genome-wide DNA methylation level and the expression of myogenesis-related genes including myogenin in the C2C12 cell line.


Subject(s)
Cell Differentiation/genetics , DNA Methylation/genetics , Dietary Supplements , Folic Acid/pharmacology , Gene Expression Regulation/drug effects , Genome , Animals , Cell Differentiation/drug effects , Cell Line , Cluster Analysis , CpG Islands/genetics , DNA Methylation/drug effects , Gene Ontology , Mice , Myogenin/genetics , Myogenin/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL