Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Mater Chem B ; 12(19): 4629-4641, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38666407

ABSTRACT

Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.


Subject(s)
Adenosine Triphosphate , Antineoplastic Agents , Infrared Rays , Animals , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy , Drug Repositioning , Humans , Lasers , Photothermal Therapy , Mice, Inbred BALB C , Cell Proliferation/drug effects , Cell Line, Tumor , Alginates/chemistry , Female , Hydrogels/chemistry , Hydrogels/pharmacology , Drug Screening Assays, Antitumor , Particle Size , Artemisinins/chemistry , Artemisinins/pharmacology
2.
PeerJ ; 10: e13949, 2022.
Article in English | MEDLINE | ID: mdl-36061750

ABSTRACT

Background: The difference of metabolites in medicinal plants has always been concerned to be influenced by external environmental factors. However, the relationship between endophytes and host metabolites remains unclear. Methods: In this study, we used 16S and ITS amplicon sequencing to compare endophyte diversity among different tissue types and ages of Gentiana officinalis. Endophyte diversity and abundance was also analyzed in relation to the abundance of four secondary metabolites (Gentiopicroside, Loganic acid, Swertiamarine and Sweroside). Results: The diversity and richness of G. officinalis endophyte differed as a function of tissue types and ages. Four metabolites of G. officinalis were significantly correlated with the abundance of dominant endophyte genera. The predictive function analysis showed that metabolism was main function of endophytic bacteria in different tissue and year root samples, while saprotroph was dominant trophic modes of endophytic fungi in the different year root samples. The dominant trophic modes of endophytic fungi was saprotroph and pathotroph, and relative abundances differed in the different tissue samples. The results of this study will help to elucidate the plant-microbial interactions and provide key information on the role of endophytes in the production of G.officinalis and its important metabolites.


Subject(s)
Gentiana , Plants, Medicinal , Endophytes/genetics , Fungi/genetics , Bacteria
3.
Sci Rep ; 12(1): 2461, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165323

ABSTRACT

Plants living at the edge of their range boundary tend to suffer an overall decline in their fitness, including growth and reproduction. However, the reproductive performance of plants in artificially expanded habitats is rarely investigated, although this type of study would provide a better understanding of range limitations and improved conservation of ex situ plants. In the current study, we transplanted a narrowly dispersed species of Gentiana officinalis H. Smith (Gentianaceae) from its natural area of distribution to two different elevations and natural elevation to comprehensively study its pollination biology, including flowering phenology and duration, floral display, reproductive allocation, pollinator activity, and seed production. The findings indicated that the starting point and endpoint of the flowering phenology of G. officinalis were earlier at the low elevation, but the peak flowering periods did not differ significantly between any of the experimental plots. When transplanted, the flowering duration, especially the female phase, was reduced; the floral display, including spray numbers, flower numbers, and flower size (length and width), decreased, especially at high elevations. Moreover, the pollen numbers and pollen-ovule ratio were decreased at both high and low elevations, although the ovule numbers showed no change, and aboveground reproductive allocation was decreased. Furthermore, pollinator richness and activity were significantly decreased, and the seed-set ratio decreased under both natural conditions and with supplemental pollination. Finally, more severe pollen limitation was found in transplanted individuals. These results indicated an overall decrease in reproductive fitness in plants living outside their original area of distribution when the geographical range of G. officinalis was expanded.


Subject(s)
Ecosystem , Genetic Fitness , Gentiana/genetics , Plant Dispersal/genetics , Pollination/genetics , Flowers/growth & development , Pollen/genetics , Seasons , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL