Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Biol Macromol ; 254(Pt 1): 127731, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287567

ABSTRACT

Ground cherry, Physalis pubescens, is mainly cultivated as a fruit worldwide and popularly used as a food supplement and traditional Chinese medicine. Plants are challenged by external environmental stress and can initiate resistance to the stress through the regulation of pathogenesis-related (PR) proteins. Among PR proteins, PR-5, a thaumatin-like protein (TLP), was identified in many plants and found to be able to enhance stress resistance. However, PR-5 in ground cherry is not characterized and its expression is yet to be understood. In this study, a PR-5 protein PpTLP1 in P. pubescens was firstly identified. Analysis of the amino acid sequences revealed that PpTLP1 was highly similar to PR-NP24 identified in tomato with a difference in only one amino acid. Expression analysis indicated that the PpTLP1 gene was highly expressed in leaf while the PpTLP1 protein was tissue-specifically accumulated in cherry exocarp. Furthermore, the down-regulation of PpTLP1 in ground cherry was induced by NaCl treatment while the up-regulation was promoted by the infection of Sclerotinia sclerotiorum and Botrytis cinerea. This study will provide a new plant resource containing a TLP in Physalis genus and a novel insight for the improvement of postharvest management of ground cherry and other Solanaceae plants.


Subject(s)
Physalis , Physalis/genetics , Plant Proteins/chemistry , Plants/metabolism , Amino Acid Sequence , Food Additives
2.
Eur J Nutr ; 63(1): 291-302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37870657

ABSTRACT

PURPOSE: Oxidative stress has been reported to cause telomere attrition, which triggers cell apoptosis. Apoptosis of neurocytes may play an essential role in the pathogenesis of neurodegenerative diseases. This study hypothesized that folic acid (FA) supplementation decreased neurocyte apoptosis by alleviating oxidative stress-induced telomere attrition in 25-month-old Sprague Dawley (SD) rats. METHODS: Three-month-old male SD rats were randomly divided into four diet groups by different concentrations of folic acid in equal numbers, with intervention for 22 months. Folate, homocysteine (Hcy), reactive oxygen species (ROS) levels, antioxidant activities, and telomere length in the brain tissues were tested at 11, 18, and 22 months of intervention, and 8-hydroxy-deoxyguanosine (8-OHdG) levels, neurocyte apoptosis and telomere length in the cerebral cortex and hippocampal regions were tested during the 22-month intervention. An automated chemiluminescence system, auto-chemistry analyzer, Q-FISH, qPCR, and TUNEL assay were used in this study. RESULTS: The rats had lower folate concentrations and higher Hcy, ROS, and 8-OHdG concentrations in brain tissue with aging. However, FA supplementation increased folate concentrations and antioxidant activities while decreasing Hcy, ROS, and 8-OHdG levels in rat brain tissue after 11, 18, and 22 months of intervention. Furthermore, FA supplementation alleviated telomere length shortening and inhibited neurocyte apoptosis during the 22-month intervention. CONCLUSION: FA supplementation alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in 25-month-old rats.


Subject(s)
Antioxidants , Folic Acid , Rats , Male , Animals , Folic Acid/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species , Rats, Sprague-Dawley , Oxidative Stress , Apoptosis , 8-Hydroxy-2'-Deoxyguanosine , Telomere
3.
Nutrients ; 15(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37836528

ABSTRACT

The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer's disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The present study explored the effects of the supplementation of MCTs combined with DHA in improving brain glucose metabolism and decreasing AD-related protein expression levels in APP/PS1 mice. The mice were assigned into four dietary treatment groups: the control group, MCTs group, DHA group, and MCTs + DHA group. The corresponding diet of the respective groups was fed to mice from the age of 3 to 11 months. The results showed that the supplementation of MCTs combined with DHA could increase serum octanoic acid (C8:0), decanoic acid (C10:0), DHA, and ß-hydroxybutyrate (ß-HB) levels; improve glucose metabolism; and reduce nerve cell apoptosis in the brain. Moreover, it also aided with decreasing the expression levels of amyloid beta protein (Aß), amyloid precursor protein (APP), ß-site APP cleaving enzyme-1 (BACE1), and presenilin-1 (PS1) in the brain. Furthermore, the supplementation of MCTs + DHA was significantly more beneficial than that of MCTs or DHA alone. In conclusion, the supplementation of MCTs combined with DHA could improve energy metabolism in the brain of APP/PS1 mice, thus decreasing nerve cell apoptosis and inhibiting the expression of Aß.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Docosahexaenoic Acids/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Mice, Transgenic , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Alzheimer Disease/drug therapy , Brain/metabolism , Dietary Supplements , Triglycerides/metabolism
4.
J Nutr Biochem ; 117: 109328, 2023 07.
Article in English | MEDLINE | ID: mdl-36958416

ABSTRACT

The brain has high energy demand making it sensitive to changes in energy fuel supply. Aging shrinks brain volume, decreases glucose uptake availability of the brain, and finally, causes cognitive dysfunction. Folic acid supplementation delayed cognitive decline and neurodegeneration. However, whether folic acid affects brain energy metabolism and structural changes is unclear. The study aimed to determine if long-term dietary folic acid supplementation could alleviate age-related cognitive decline by attenuating hippocampus atrophy and promoting brain glucose uptake in Sprague-Dawley (SD) rats. According to folic acid levels in diet, 3-months old male SD rats were randomly divided into four intervention groups for 22 months in equal numbers: folic acid-deficient diet (FA-D) group, folic acid-normal diet (FA-N) group, low folic acid-supplemented diet (FA-L) group, and high folic acid-supplemented diet (FA-H) group. The results showed that serum folate concentrations decreased and serum homocysteine (Hcy) concentrations increased with age, and dietary folic acid supplementation increased serum folate concentrations and decreased Hcy concentrations at 11, 18, and 22 months of intervention. Dietary folic acid supplementation attenuated aging-induced hippocampus atrophy, which was showed by higher fractional anisotropy and lower mean diffusivity in the hippocampus, increased brain 18F-Fluorodeoxyglucose (18F-FDG) uptake, then stimulated neuronal survival, and alleviated age-related cognitive decline in SD rats. In conclusion, long-term dietary folic acid supplementation alleviated age-related cognitive decline by attenuating hippocampus atrophy and promoting brain glucose uptake in SD rats.


Subject(s)
Cognitive Dysfunction , Diet , Rats , Animals , Male , Rats, Sprague-Dawley , Folic Acid/metabolism , Dietary Supplements , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Aging , Hippocampus/metabolism , Glucose/metabolism
5.
Environ Technol ; 44(13): 1890-1902, 2023 May.
Article in English | MEDLINE | ID: mdl-34882064

ABSTRACT

In recent years, there has been a growing concern about heavy metal contamination in sediments. In this study, iron-based granular biochar (MGB) is prepared to remediate Cu and Pb contaminated sediments. Characterizations via scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) show that the rough surface of MGB with abundant pore structures and a large number of oxygen-containing functional groups that facilitate stabilization of Cu and Pb in sediments. Potential mobility and bioavailability of Cu and Pb are investigated using BCR sequential extraction in the 35 day remediation experiment. The XPS results indicate that FeOOH and C-OH play a crucial part in stabilizing heavy metals. Large affinity of FeOOH for Pb allows it to occupy a proportion in F2 while C-OH is attractive to Cu. Changes of pH, organic matter (OM), and available phosphorus (AP) in sediments after adding MGB as well as the relationship between changes and the stable solidification of Cu and Pb are explored. The stable solidification of heavy metals effectively reduces the available phosphorus in sediments. Magnetic and particle properties of the material are used to reduce the impact of MGB aging on sediment environment and separate it from the remediated sediment. Finally, 3% of MGB significantly enhanced the sediment catalase activity in the biological enzyme activity experiment. All findings indicate that MGB is a green and environmentally friendly sediment remediation material with satisfactory potential in synergistically stabilizing heavy metals and phosphorus.Highlights The complexation of FeOOH with Pb on the surface of MGB fixes it to the reduced stateThe C-OH on the surface of MGB is more attractive to Cu than PbMGB effectively mitigates the release of bioavailable phosphorus from sediments to overlying water.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Copper/chemistry , Lead , Iron , Metals, Heavy/chemistry , Phosphorus , Geologic Sediments/chemistry
6.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293423

ABSTRACT

Dianthus spp. is a genus with high economic and ornamental value in the Caryophyllaceae, which include the famous fresh-cut carnation and the traditional Chinese herbal medicine, D. superbus. Despite the Dianthus species being seen everywhere in our daily lives, its genome information and phylogenetic relationships remain elusive. Thus, we performed the assembly and annotation of chloroplast genomes for 12 individuals from seven Dianthus species. On this basis, we carried out the first comprehensive and systematic analysis of the chloroplast genome sequence characteristics and the phylogenetic evolution of Dianthus. The chloroplast genome of 12 Dianthus individuals ranged from 149,192 bp to 149,800 bp, containing 124 to 126 functional genes. Sequence repetition analysis showed the number of simple sequence repeats (SSRs) ranged from 75 to 80, tandem repeats ranged from 23 to 41, and pair-dispersed repeats ranged from 28 to 43. Next, we calculated the synonymous nucleotide substitution rates (Ks) of all 76 protein coding genes to obtain the evolution rate of these coding genes in Dianthus species; rpl22 showed the highest Ks (0.0471), which suggested that it evolved the swiftest. By reconstructing the phylogenetic relationships within Dianthus and other species of Caryophyllales, 16 Dianthus individuals (12 individuals reported in this study and four individuals downloaded from NCBI) were divided into two strongly supported sister clades (Clade A and Clade B). The Clade A contained five species, namely D. caryophyllus, D. barbatus, D. gratianopolitanus, and two cultivars ('HY' and 'WC'). The Clade B included four species, in which D. superbus was a sister branch with D. chinensis, D. longicalyx, and F1 '87M' (the hybrid offspring F1 from D. chinensis and 'HY'). Further, based on sequence divergence analysis and hypervariable region analysis, we selected several regions that had more divergent sequences, to develop DNA markers. Additionally, we found that one DNA marker can be used to differentiate Clade A and Clade B in Dianthus. Taken together, our results provide useful information for our understanding of Dianthus classification and chloroplast genome evolution.


Subject(s)
Dianthus , Drugs, Chinese Herbal , Genome, Chloroplast , Humans , Dianthus/genetics , Genetic Markers , Phylogeny , Microsatellite Repeats/genetics , Nucleotides
7.
Environ Sci Pollut Res Int ; 29(25): 38097-38109, 2022 May.
Article in English | MEDLINE | ID: mdl-35067873

ABSTRACT

White mold of sunflower caused by Sclerotinia sclerotiorum is a devastating disease that causes serious yield losses. Selenium (Se) helps plants resist stress. In this study, the resistance of sunflower to S. sclerotiorum was improved after foliar application of selenite. Selenite sprayed on leaves can be absorbed by sunflowers and transformed to selenomethionine. Consequently, sunflowers treated with Se exhibited a delay in lesion development with decrease by 54% compared to mock inoculation at 36-h post inoculation (hpi). In addition, treatment with Se compromised the adverse effects caused by S. sclerotiorum infection by balancing the regulation of genes involved in redox homeostasis. In particular, cat expression on leaves treated with Se increased to 2.5-fold to alleviate the downregulation caused by S. sclerotiorum infection at 12 hpi. Additionally, apx expression on leaves treated with Se decreased by 36% to alleviate the upregulation caused by S. sclerotiorum infection at 24 hpi, whereas expressions of gpx, pox, and nox on leaves treated with Se also successively decreased by approximately 40-60% to alleviate the upregulation caused by S. sclerotiorum infection at 24 and 36 hpi, respectively. The use of Se also enhanced the regulation of genes involved in hormones signaling pathways, in which expressions of AOC and PAL increased to 2.0- and 1.5-fold, respectively, to enhance the upregulation caused by S. sclerotiorum infection at 12 hpi, whereas expressions of AOC and PDF1.2 increased to 2.7- and 1.8-fold at 24 hpi, respectively. In addition, EIN2 expression on leaves treated with Se increased to 1.8-, 2.0-, and 1.5-fold to alleviate the downregulation caused by S. sclerotiorum infection. These results suggest that Se can improve sunflower defense responses against S. sclerotiorum infection aiming a sustainable white mold management.


Subject(s)
Asteraceae , Helianthus , Selenium , Ascomycota , Homeostasis , Hormones , Oxidation-Reduction , Plant Diseases/prevention & control , Selenious Acid , Selenium/pharmacology , Signal Transduction
8.
Langenbecks Arch Surg ; 405(5): 603-611, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32710380

ABSTRACT

PURPOSE: Emerging evidences have raised concerns about electrolyte disorders caused by restrictive fluid management in the enhanced recovery after surgery (ERAS) protocol. This study aims to investigate the morbidity and treatment of electrolyte disorders associated with ERAS in patients undergoing hepato-pancreato-biliary (HPB) surgery. METHODS: Clinical data from 157 patients under the ERAS program and 166 patients under the traditional (Non-ERAS) program after HPB surgery were retrospectively analyzed. Risk factors and predictive factors of postoperative electrolyte disorders were analyzed by logistic regression analysis and receiver operator characteristic (ROC) curve analysis, respectively. RESULTS: The average of intravenous fluid, sodium, chloride, and potassium supplementation after surgery were significantly lower in the ERAS group. Hypokalemia was the most common type of electrolyte disorders in the ERAS group, whose incidence was substantially increased compared to that in the Non-ERAS group [28.77% vs. 8.97%, p < 0.001, on postoperative (POD) 5]. Logistic regression analysis identified the ERAS program and age as independent risk factors of hypokalemia. ROC curve analysis identified serum potassium levels below 3.76 mmol/L on POD 3 (area under curve 0.731, sensitivity 58.54%, specificity 82.69%) as a predictive factor for postoperative hypokalemia in ERAS patients. Oral supplementation at an average of 35.41 mmol potassium per day was effective in restoring the ERAS-associated hypokalemia. CONCLUSIONS: ERAS procedures were particularly associated with a lower supplementation of potassium and a higher incidence of hypokalemia in patients after HPB surgery. Oral potassium supplementation could be an adopted ERAS program for the elderly undergoing HPB surgery.


Subject(s)
Digestive System Surgical Procedures , Enhanced Recovery After Surgery , Fluid Therapy/adverse effects , Hypokalemia/etiology , Postoperative Complications/etiology , Water-Electrolyte Imbalance/etiology , Biliary Tract Diseases/surgery , China , Female , Humans , Hypokalemia/prevention & control , Liver Diseases/surgery , Male , Middle Aged , Pancreatic Diseases/surgery , Postoperative Complications/prevention & control , Potassium/administration & dosage , Retrospective Studies , Risk Factors , Water-Electrolyte Imbalance/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL