ABSTRACT
Accurately quantifying selenium (Se) speciation and transformation in Se-enriched crops is highly significant for human health. The investigation of Se species in Se-enriched crops involves assessing the enrichment of both organic and inorganic Se species, considering their plant families and edible parts. The staple crops of rice, corn, and wheat showed no or less inorganic Se with the increase of total Se; however, potatoes expressed a proportion of selenate [Se(VI)]. In addition, the organic Se proportions in Se-enriched crops of Cruciferous, Brassicaceae, and Umbelliferae plant families were relatively lower than the proportion of inorganic Se. Concurrently, the edible parts of the Se-enriched gramineous or cereal crops enriched with organic Se and crops with fruit, stem, leaf, and root as edible parts contain the maximum percentage of organic Se with a certain proportion of inorganic Se. This study contributes to a sparse body of literature by meticulously discerning appropriate Se-enriched crop selection through a comprehensive evaluation of Se speciation and its organic and inorganic accumulation potential.
Subject(s)
Selenium Compounds , Selenium , Humans , Selenic Acid , Crops, Agricultural , Edible GrainABSTRACT
BACKGROUND: Selenium (Se) is an essential nutrient and an important component of many selenoproteins that possess fundamental importance to human health. Selenium deficiency and excess will cause corresponding diseases in the human body. The nutritional health of Se in the human body mainly depends on the daily dietary Se intake of the human body, which in turn depends to a certain extent on the content of Se transmitted along the food chain. This study aims to research the transport of Se through the soil-crop-human chain in regions with different Se levels, and to establish the model between the residents' dietary Se intake and the three Se biomarkers (hair, nails, and plasma), to predict the nutritional health status of Se in residents through Se biomarkers. METHOD: Carry out field and cross-sectional surveys of populations in Loujiaba Village and Longshui Village. Samples were collected from soil, crops, drinking water, residents' hair, nails, plasma, and diet. The concentration of available Se fractions was extracted from soil samples using 0.1 mol/L K2HPO4. The concentration of total Se for all samples was determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), and the relative standard deviation was less than 5%. In this study, hair, nails, and blood samples were collected from volunteers according to the Declaration of Helsinki and the Ethics Committee of Soochow University. The dietary nutritional structure and dietary Se intake of the population were randomly selected by 12 volunteers using the duplicate portion method. Data were described using mean ± standard deviation. We performed saliency analysis and correlation analysis (with Pearson correlation coefficient), and fitted a regression to evaluate the associations between these variables. RESULTS: The soil total Se (5201 ± 609.2 µg/kg) and available Se (307.7 ± 83.5 µg/kg) in Luojiaba Village (LJB) were significantly higher than the soil total Se (229.2 ± 32.5 µg/kg) and available Se (21.9 ± 4.0 µg/kg) in Longshui Village (LS). The residents' dietary Se intake of LJB (150.3 ± 2.2 µg/d) was within the World Health Organization (WHO) recommended intake range, while LS (16.0 ± 0.4 µg/d) was close to the range of Keshan disease occurrence, and there was a risk of insufficient Se intake. The correlation analysis found significant positive correlations between residents' dietary Se intake and the three Se biomarkers. According to the preliminary model established in this study, if the daily dietary Se intake of residents reaches the WHO recommended value of 55-400 µg, the hair, nails, and plasma of Se concentration will be 522.1-2850.5 µg/kg, 1069.0-6147.4 µg/kg, and 128.3-661.36 µg/L, respectively. CONCLUSION: Selenium is transmitted through the soil-crop-human chain, and the Se concentration that enters the human body through the food chain in high-Se areas is significantly higher than that in low-Se areas. The nutritional health status of Se in the human body depends on the daily dietary intake of the human body, and there is a significant correlation between the daily dietary Se intake of the human body and the three biomarkers of Se levels in the human body, so the three biomarkers can be used to evaluate the Se nutritional health of the human.
Subject(s)
Nutritional Status , Selenium , Humans , Biomarkers , Cross-Sectional Studies , Diet , Soil/chemistry , Random AllocationABSTRACT
Selenium (Se) is an essential trace element for maintaining human health, for example, plays a crucial role in preventing aging-related diseases. However, most studies on the health effects of Se among the community middle-aged and elderly have been observational or the health indices were single, and the related study among the Chinese population is limited. Additionally, China is recognized as among the countries facing a significant deficiency in Se, and Se contents in the human body may decrease with age. Therefore, a two-step study was conducted to explore the health effects of Se exposure and supplementation among such populations in China. Firstly, a retrospective cohort study was conducted to compare the health outcomes between such populations residing in Se-rich regions and non-Se-rich regions, involving a total of 102 subjects, with 51 residing in Se-rich regions and 51 in non-Se-rich regions. The hair-Se (H-Se) contents, serum-Se (S-Se) contents, and total cholesterol of subjects from Se-rich regions were significantly higher than their counterparts. Notably, significant positive associations were observed between S-Se and lipids. Secondly, a before-after self-control Se supplementation study among subjects residing in non-Se-rich regions was conducted. A total of 40 subjects administered Se tablets orally for 30 days, with Se of 120 µg/day. The results showed significant increases in H-Se and S-Se. Se supplementation also exhibited positive effects on alanine aminotransferase, homocysteine, and fasting glucose; however, high-density lipoprotein cholesterol significantly decreased. Overall, the community middle-aged and elderly residing in Se-rich regions or receiving quantitative Se supplementation could effectively improve Se contents in bodies and certain health indices, excluding lipids. These improvements encompass liver function, cardiovascular health, and glucose metabolism. These findings enhance our understanding of how Se impacts the health of the middle-aged and elderly, emphasizing the significance of targeted interventions for such populations in non-Se-rich regions. Trial registration: ChiCTR2000040987 ( https://www.chictr.org.cn ).
ABSTRACT
3,3'-Diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention because of its antioxidant properties and safety. Its protective effect against dextran sodium sulfate (DSS)-induced mouse ulcerative colitis (UC) and the role of T helper 17 (Th17) cell proliferation were investigated. Fifty C57BL/6 male mice were randomly assigned to one of five groups: control (Con), DSePA, DSS, low-dose DSePA (LSe), and high-dose DSePA (HSe). Mice in the DSS, LSe, and HSe groups drank 2% DSS to induce UC, and received normal saline, 1 and 2 mg/mL DSePA solution by intraperitoneal injection, respectively. The DSePA group only received 2 mg/mL DSePA solution. After 5 weeks, DSS challenge induced UC in the mice, which manifested as decreased body weight, shortened colon length, the loss of goblet cells, activated proliferating cells, and multiple signs of intestinal lesions by histological observation, all of which were reversed to varying degrees by DSePA administration. DSS upregulated the colonic protein expression of the macrophage marker F4/80 and proinflammatory cytokines (IL-1ß, IL-6, and TNFα), whereas DSePA administration downregulated the expression of these factors. DSS upregulated the mRNA expression of retinoic acid receptor-related orphan receptor γt (RORγt, mainly expressed in Th17 cells), IL-17A, and IL-17F and the levels of IL-17A and IL-17F in the colon, whereas DSePA administration decreased them. No difference was observed between the Con group and the DSePA group without DSS induction. Thus, DSePA administration ameliorated DSS-induced UC by regulating Th17-cell proliferation and the secretion of proinflammatory cytokines.
Subject(s)
Colitis, Ulcerative , Mice , Male , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-17/pharmacology , Dextrans/adverse effects , Dextrans/metabolism , Mice, Inbred C57BL , Colon , Cytokines/metabolism , Disease Models, Animal , Dextran Sulfate/toxicity , Dextran Sulfate/metabolismABSTRACT
In 1963, selenosis occurred in Yutangba Village, Enshi City, China. Subsequently, local residents migrated to a new area of Yutangba to avoid high selenium (Se) exposure. In this study, 19 soil samples, 43 food samples, 60 hair samples and 58 plasma samples from local residents were randomly collected in New Yutangba Village. The mean total Se concentrations in cultivated soil samples were 1753.6 ± 742.8 µg/kg (n = 14). The estimated daily Se intake in New Yutangba Village decreased to 63.2 ± 39.8 µg/day, slightly higher than the recommended dietary Se intake for adults in China (60 µg/day). The mean Se concentrations in hair and plasma samples were 549.7 ± 165.2 µg/kg (n = 60) and 98.4 ± 32.1 µg/L (n = 58), respectively. The result indicated that appropriate activities, such as relocation, consuming a mixture of local foods and market foods containing low Se concentration, could effectively reduce the risk of high Se exposure.