Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Environ Pollut ; 231(Pt 1): 622-634, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28843901

ABSTRACT

Two types of diluted bitumen (dilbit) and a light crude oil spiked onto the surface of saltwater were irradiated with natural solar light in Ottawa to assess the impact of sunlight to the fate of oxygenated intermediates. Oxygenated components, including carbonyl polycyclic aromatic hydrocarbons (PAHs) and acidic polar fractions (naphthenic acid fraction compounds, NAFCs), were identified after periods of solar exposure under both winter and summer conditions. Carbonyl PAHs and NAFCs were formed in both seasons; however, light crude and summer irradiation produced higher abundance of them than dilbits and winter exposure. The formed NAFCs were abundant with the congeners containing a heteroatom of oxygen only (Oo species), accompanied by the minor amounts of sulfur- and nitrogen-containing acids. The produced Oo species were predominant with the congeners with light molecular weight, high degree of saturation and heavy oxygen numbers. For both carbonyl PAHs and NAFCs, their abundance continually increased throughout the period of winter exposure. In the summer, some carbonyl PAHs and all Oo species increased during the early exposure period; then they decreased with continued exposure for most oils, illustrating their transitional nature. Oxygenated intermediates thus appear to have been created through the photo-oxidation of non-to medium-polar petroleum hydrocarbons or the intermediates of aldehydes or ketones (O1). Oil properties, the duration of exposure, exposure season and the chemical structure of these intermediates are critical factors controlling their fate through photo-oxidation. The observed chemical changes highlight the effects of sunlight on the potential behavior, fate and impact of spilled oil, with the creation of new resin group compounds and the reduction of aromatics and saturates. These results also imply that the ecological effects of spilled oil, after ageing in sunlight, depend on the specific oil involved and the environmental conditions.


Subject(s)
Hydrocarbons/chemistry , Models, Chemical , Seawater/chemistry , Water Pollutants, Chemical/chemistry , Cell Respiration , Oxidation-Reduction , Oxygen , Petroleum/analysis , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/analysis , Solar Energy , Sunlight
2.
Mar Pollut Bull ; 104(1-2): 322-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26795119

ABSTRACT

Concentration-synchronous-matrix-fluorescence (CSMF) spectroscopy was applied to discriminate the oil species by characterizing the concentration dependent fluorescence properties of petroleum related samples. Seven days weathering experiment of 3 crude oil samples from the Bohai Sea platforms of China was carried out under controlled laboratory conditions and showed that weathering had no significant effect on the CSMF spectra. While different feature extraction methods, such as PCA, PLS and Gabor wavelet analysis, were applied to extract discriminative patterns from CSMF spectra, classifications were made via SVM to compare their respective performance of oil species recognition. Ideal correct rates of oil species recognition of 100% for the different types of oil spill samples and 92% for the closely-related source oil samples were achieved by combining Gabor wavelet with SVM, which indicated its advantages to be developed to a rapid, cost-effective, and accurate forensic oil spill identification technique.


Subject(s)
Environmental Monitoring/methods , Petroleum Pollution/analysis , Petroleum/analysis , Support Vector Machine , Water Pollutants, Chemical/analysis , Wavelet Analysis , China , Fluorescence , Principal Component Analysis , Spectrometry, Fluorescence
3.
Environ Toxicol Chem ; 33(8): 1754-60, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24648240

ABSTRACT

The reference method for the Canada-wide standard (CWS) for petroleum hydrocarbons (PHCs) in soil provides laboratories with methods for generating accurate and reproducible soil analysis results. The CWS PHC tier 1 generic soil-quality guidelines apply to 4 carbon ranges/fractions: F1 (C6-C10), F2 (C10-C16), F3 (C16-C34), and F4 (>C34). The methods and guidelines were developed and validated for soils with approximately 5% total organic carbon (TOC). However, organic soils have much higher TOC levels because of biogenic organic compounds (BOCs) originating from sources such as plant waxes and fatty acids. Coextracted BOCs can have elevated F2-F4 concentrations, which can cause false exceedances of PHC soil guidelines. The present study evaluated false PHC detections in soil samples collected from 34 background sites. The list of analytes included soil type, TOC, polycyclic aromatic hydrocarbons (PAHs), F2, F3, F4, F3a (C16-C22), and F3b (C22-C34). Soils with 3% to 41% TOC falsely exceeded the CWS PHC 300 mg/kg F3 coarse soil guideline. It was previously demonstrated that clean peat had F2:F3b ratios of less than 0.10, while crude oil spiked peat and spiked sand had higher ratios of greater than 0.10. In the present background study, all of the clean organic soils with at least 300 mg/kg F3 had F2:F3b ratios of less than 0.10, which indicated false guideline exceedances. Clean inorganic soils had low F3 concentrations, resulting in high F2:F3b ratios of greater than 0.10. Validation field studies are required to determine if the F2:F3b 0.10 PHC presence versus absence threshold value is applicable to crude oil- and diesel-contaminated sites.


Subject(s)
Data Collection , Environmental Monitoring/methods , Flame Ionization/methods , Gas Chromatography-Mass Spectrometry/methods , Hydrocarbons/analysis , Petroleum/analysis , Soil/chemistry , Canada , Carbon/chemistry , Minerals/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Silicon Dioxide/analysis , Soil Pollutants/analysis
4.
Sci Total Environ ; 473-474: 742-9, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24462999

ABSTRACT

Oil-suspended particulate matter aggregation (OSA) has been recognized by the oil spill remediation community to effectively enhance the cleansing of spilled oil in the marine environment. While studies have investigated the application of mineral fines as an effective method to facilitate oil dispersion, decision-makers still lack information on the role of mixing energy in OSA formation and its significance to oil dispersion in real spills. This work studied the effect of level and duration of mixing energy on OSA formation using the standard reference material 1,941 b and Arabian light crude oil. The results showed that dispersed small oil droplets increased with an increase of both the level and duration of mixing energy to form multi-droplet OSAs. The sizes of the dispersed droplets varied between 5 and 10 µm under different conditions studied. The maximum oil trapping efficiency increased from 23% to 33%, the oil to sediment ratio increased from 0.30 to 0.43 g oil/g sediment, and the required shaking time decreased from 2.3 to 1.1h as the shaking rate increased from 2.0 to 2.3 Hz. Based on the size measurement results, a breakage effect on the formed OSAs and sediment flocs was confirmed under high mixing energy level.


Subject(s)
Particulate Matter/analysis , Petroleum Pollution , Petroleum , Water Pollutants, Chemical/analysis , Environmental Restoration and Remediation , Geologic Sediments , Models, Chemical
5.
Environ Toxicol Chem ; 32(10): 2197-206, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23703885

ABSTRACT

The Canadian Council of Ministers of the Environment (CCME) reference method for the Canada-wide standard (CWS) for petroleum hydrocarbon (PHC) in soil provides chemistry analysis standards and guidelines for the management of contaminated sites. However, these methods can coextract natural biogenic organic compounds (BOCs) from organic soils, causing false exceedences of toxicity guidelines. The present 300-d microcosm experiment used CWS PHC tier 1 soil extraction and gas chromatography-flame ionization detector (GC-FID) analysis to develop a new tier 2 mathematical approach to resolving this problem. Carbon fractions F2 (C10-C16), F3 (C16-C34), and F4 (>C34) as well as subfractions F3a (C16-C22) and F3b (C22-C34) were studied in peat and sand spiked once with Federated crude oil. These carbon ranges were also studied in 14 light to heavy crude oils. The F3 range in the clean peat was dominated by F3b, whereas the crude oils had approximately equal F3a and F3b distributions. The F2 was nondetectable in the clean peat but was a significant component in crude oil. The crude oil­spiked peat had elevated F2 and F3a distributions. The BOC-adjusted PHC F3 calculation estimated the true PHC concentrations in the spiked peat. The F2:F3b ratio of less than 0.10 indicated PHC absence in the clean peat, and the ratio of greater than or equal to 0.10 indicated PHC presence in the spiked peat and sand. Validation studies are required to confirm whether this new tier 2 approach is applicable to real-case scenarios. Potential adoption of this approach could minimize unnecessary ecological disruptions of thousands of peatlands throughout Canada while also saving millions of dollars in management costs.


Subject(s)
Hydrocarbons/analysis , Petroleum/analysis , Soil Pollutants/analysis , Soil/chemistry , Analysis of Variance , Canada , Chromatography, Gas , Environmental Pollution , Flame Ionization , Hydrocarbons/standards , Reference Standards , Silicon Dioxide/analysis , Soil/standards
6.
J Sep Sci ; 36(11): 1788-96, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23495249

ABSTRACT

A case study is presented for the forensic identification of several spilled biodiesels and its blends with petroleum oil using integrated forensic oil fingerprinting techniques. The integrated fingerprinting techniques combined SPE with GC/MS for obtaining individual petroleum hydrocarbons (aliphatic hydrocarbons, polyaromatic hydrocarbons and their alkylated derivatives and biomarkers), and biodiesel hydrocarbons (fatty acid methyl esters, free fatty acids, glycerol, monoacylglycerides, and free sterols). HPLC equipped with evaporative scattering laser detector was also used for identifying the compounds that conventional GC/MS could not finish. The three environmental samples (E1, E2, and E3) and one suspected source sample (S2) were dominant with vegetable oil with high acid values and low concentration of fatty acid methyl ester. The suspected source sample S2 was responsible for the three spilled samples although E1 was slightly contaminated by petroleum oil with light hydrocarbons. The suspected source sample S1 exhibited with the high content of glycerol, low content of glycerides, and high polarity, indicating its difference from the other samples. These samples may be the separated byproducts in producing biodiesel. Canola oil source is the most possible feedstock for the three environmental samples and the suspected source sample S2.


Subject(s)
Biofuels/analysis , Forensic Sciences/methods , Gas Chromatography-Mass Spectrometry/methods , Petroleum/analysis , Hydrocarbons/analysis , Quality Control
7.
J Environ Monit ; 14(9): 2367-81, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22796730

ABSTRACT

Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 µg g(-1) for coarse soils and 1300 µg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization results of this set of 21 samples. In general, the presence of petroleum-characteristic alkylated PAH homologues and biomarkers can be used as unambiguous indicators of the contamination of oil and petroleum product hydrocarbons; while the absence of petroleum-characteristic alkylated PAH homologues and biomarkers and the presence of abundant BOC can be used as unambiguous indicators of the predominance of natural organic compounds in soil samples.


Subject(s)
Environmental Monitoring/methods , Hydrocarbons/chemistry , Petroleum Pollution/analysis , Petroleum/analysis , Soil Pollutants/chemistry , Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Soil/chemistry , Soil Pollutants/analysis
8.
Environ Toxicol Chem ; 31(4): 754-65, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22213001

ABSTRACT

The chronic toxicity of crude oil to fish embryos depends on the chemical constituents of the test oil and on factors that control the exposure of embryos to those constituents. The partitioning of chemicals from oil to water depends on the surface area of oil exposed to water and thus on the susceptibility of oil to be dispersed into droplets. The chronic toxicity of four different crude oils to embryos of rainbow trout (Oncorhynchus mykiss) was measured by exposure to the water-accommodated fraction (WAF; no droplet formation) and to the chemically enhanced WAF (CEWAF) of each oil. When effects were compared with the amount of WAF or CEWAF added to test solutions, chemical dispersion increased toxicity dramatically, by >35 to >300-fold, with the smallest difference measured for the lightest and least viscous oil. When effects were compared with measured concentrations of oil in test solutions, there were no differences in toxicity between WAF and CEWAF treatments, indicating that chemical dispersion promoted droplet formation and the partitioning of hydrocarbons from oil to water. On a dilution basis, the differences in toxicity among the four oils were correlated with the concentrations in oil of polynuclear aromatic hydrocarbons (PAH), particularly those with three to five rings, and with their viscosity, an index of dispersibility. However, when PAH concentrations were measured in solution, toxicity did not vary substantially among the four oils, suggesting that the PAH of each oil had equivalent toxicities and that differences in toxicity represented differences in dispersability.


Subject(s)
Embryo, Nonmammalian/drug effects , Oncorhynchus mykiss/embryology , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biological Availability , Polycyclic Aromatic Hydrocarbons/toxicity , Toxicity Tests, Chronic , Viscosity , Weather
9.
Environ Toxicol Chem ; 29(12): 2685-94, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20836068

ABSTRACT

Canadian standards for petroleum hydrocarbons in soil are based on four distillate ranges (F1, C6-C10; F2, >C10-C16; F3, >C16-C34; and F4, >C34). Concerns have arisen that the ecological soil contact standards for F3 may be overly conservative. Oil distillates were prepared and characterized, and the toxicity of F3 and two subfractions, F3a (>C16-C23) and F3b (>C23-C34), to earthworms (Eisenia andrei), springtails (Orthonychiurus folsomi), and northern wheatgrass (Elymus lanceolatus), as well as the toxicity of F2 to earthworms, was determined. Clean soil was spiked with individual distillates and measured concentrations were determined for select tests. Results agree with previous studies with these distillates. Reported toxicities of crude and petroleum products to invertebrates were generally comparable to that of F3 and F3a. The decreasing order of toxicity was F3a > F3 > F3b with invertebrates, and F3a > F3b > F3 with plants. The toxicities of F3a and F3b were not sufficiently different to recommend regulating hydrocarbons based on these distillate ranges. The results also suggest that test durations may be insufficient for determining toxicity of higher distillate ranges, and that the selection of species and endpoints may significantly affect interpretation of toxicity test results.


Subject(s)
Petroleum/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Soil/analysis , Petroleum/analysis , Soil Pollutants/analysis
10.
Mar Pollut Bull ; 60(10): 1701-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20655072

ABSTRACT

The formation of oil-suspended particulate matter aggregates (OSAs) results from the heteroaggregation between dispersed oil droplets and suspended particulate matter present in coastal waters. This process has been recognized by the oil spill remediation community to enhance natural cleansing of oiled shorelines and oil dispersion in the water column. While several studies have been conducted on the formation and characteristics of OSAs, few studies have addressed the kinetics of OSA formation. Operationally, this has left decision-makers lacking information on the time scale of this process and its significance to oil dispersion in real spills. A laboratory study was conducted to investigate the kinetics of OSA formation as a function of mixing energy and the sediment-to-oil ratio using the standard reference material 1941b. Results showed that formation of OSAs increased exponentially with the mixing time and reached a maximum within 4h. When the shaking rate increased from 2.0 to 2.3 Hz, the maximum oil trapping efficiency increased from 20% to 42% and the required shaking time decreased from 3.7 to 0.7h.


Subject(s)
Particulate Matter/chemistry , Petroleum/analysis , Water Pollutants, Chemical/chemistry , Geologic Sediments , Kinetics
11.
J Chromatogr A ; 1216(20): 4475-84, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19321169

ABSTRACT

This study presents a quantitative gas chromatography-mass spectrometry analysis of bicyclic sesquiterpanes (BSs) in numerous crude oils and refined petroleum products including light and mid-range distillate fuels, residual fuels, and lubricating oils collected from various sources. Ten commonly recognized bicyclic sesquiterpanes were determined in all the studied crude oils and diesel range fuels with principal dominance of BS3 (C(15)H(28)), BS5 (C(15)H(28)) and BS10 (C(16)H(30)), while they were generally not detected or in trace in light fuel oils like gasoline and kerosene and most lubricating oils. Laboratory distillation of crude oils demonstrated that sesquiterpanes were highly enriched in the medium distillation fractions of approximately 180 to 481 degrees C and were generally absent or very low in the light distillation fraction (boiling point to approximately 180 degrees C) and the heavy residual fraction (>481 degrees C). The effect of evaporative weathering on a series of diagnostic ratios of sesquiterpanes, n-alkanes, and biomarkers was evaluated with two suites of weathered oil samples. The change of abundance of sesquiterpanes was used to determine the extent of weathering of artificially evaporated crude oils and diesel. In addition to the pentacyclic biomarker C(29) and C(30) alphabeta-hopane, C(15) and C(16) sesquiterpanes might be alternative internal marker compounds to provide a direct way to estimate the depletion of oils, particularly diesels, in oil spill investigations. These findings may offer potential applications for both oil identification and oil-source correlation in cases where the tri- to pentacyclic biomarkers are absent due to refining or environmental weathering of oils.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Gasoline/analysis , Petroleum/analysis
12.
J Chromatogr A ; 1216(7): 1174-91, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19131067

ABSTRACT

"Total petroleum hydrocarbons" (TPHs) or "petroleum hydrocarbons" (PHCs) are one of the most widespread soil pollutants in Canada, North America, and worldwide. Clean-up of PHC-contaminated soils and sediments costs the Canadian economy hundreds of million of dollars annually. Much of this activity is driven by the need to meet regulated levels of PHC in soil. These PHC values are legally required to be assessed using standard methods. The method most commonly used in Canada, specified by the Canadian Council of Ministers of the Environment (CCME), measures the total hydrocarbon concentrations in a soil by carbon range (Fraction 1: C(6)-C(10); Fraction 2: C(10)-C(16), Fraction 3: C(16)-C(34): and Fraction 4: C(34)+). Using the CCME method, all of the materials extractible by a mixture of 1:1 hexane:acetone are considered to be petroleum hydrocarbon contaminants. Many hydrocarbon compounds and other extractible materials in soil, however, may originate from non-petroleum sources. Biogenic organic compounds (BOCs) is a general term used to describe a mixture of organic compounds, including alkanes, sterols and sterones, fatty acids and fatty alcohols, and waxes and wax esters, biosynthesized by living organisms. BOCs are also produced during the early stages of diagenesis in recent aquatic sediments. BOC sources could include vascular plants, algae, bacteria and animals. Plants and algae produce BOCs as protective wax coating that are released back into the sediment at the end of their life cycle. BOCs are natural components of thriving plant communities. Many solvent-extraction methods for assessing soil hydrocarbons, however, such as the CCME method, do not differentiate PHCs from BOCs. The naturally occurring organics present in soils and wet sediments can be easily misidentified and quantified as regulated PHCs during analysis using such methods. In some cases, biogenic interferences can exceed regulatory levels, resulting in remediation of petroleum impacts that are not actually present. Consequently, reliance on these methods can trigger unnecessary and costly remediation, while also wasting valuable landfill space. Therefore, it is critically important to develop new protocols to characterize and differentiate PHCs and BOCs in contaminated sediments. In this study, a new reliable gas chromatography-mass spectrometry (GC-MS) method, in combination with a derivatization technique, for characterization of various biogenic compounds (including biogenic alkanes, sterols, fatty acids and fatty alcohols) and PHCs in the same sample has been developed. A multi-criteria approach has been developed to positively identify the presence of biogenic compounds in soil and sediment samples. More than thirty sediment samples were collected from city stormwater management (SWM) ponds and wetlands across Canada. In these wet sediment samples, abundant biogenic n-alkanes, thirteen biogenic sterols, nineteen fatty carboxylic acids, and fourteen fatty alcohols in a wide carbon range have been positively identified. Both PHCs and BOCs in these samples were quantitatively determined. The quantitation data will be used for assessment of the contamination sites and toxicity risks associated with the CCME Fraction 3 hydrocarbons.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Geologic Sediments/chemistry , Hydrocarbons/analysis , Petroleum/analysis , Soil Pollutants/analysis , Alkanes/analysis , Calibration , Carboxylic Acids/analysis , Fatty Acids/analysis , Fatty Alcohols/analysis , Flame Ionization , Hydrocarbons/isolation & purification , Models, Molecular , Reproducibility of Results , Sensitivity and Specificity , Sterols/analysis
13.
Environ Sci Technol ; 40(18): 5636-46, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-17007120

ABSTRACT

Diamondoids (adamantanes and diamantanes) are rigid, three-dimensionallyfused cyclohexyl-ring alkane compounds that can be found in almost all crude oils and in most petroleum products. Forforensic environmental investigations, the most commonly used biomarkers are high molecular weight (MW) tri- to pentacyclic terpanes and steranes. Most of these high MW biomarkers, however, are removed from the original crude oil feedstocks during the refining processes, while smaller biomarkers including diamondoids are concentrated in petroleum products. Fingerprinting diamondoids could thus provide another diagnostic means for correlation and differentiation of spilled oils and be particularly valuable for light to midrange distillates, such as jet and diesel fuels, the source of which may be difficult to identify using routine biomarker techniques. In this work, a reliable GC-MS analytical method has been developed for characterization and quantitation of diamondoids. The method detection limits for five target diamondoids were determined to be in the range of 0.06-0.14 microg/g oil. Distributions of diamondoids in over 100 different oils and refined products were quantitatively compared. The concentrations of four groups of target biomarkers were found, in general, to decrease in the order of sesquiterpanes > terpanes and steranes > adamantanes > diamantanes in both crude oils and refined products. A number of indices of admantanes and diamantanes have been developed and assessed as source indicators using their diagnostic powers (DP). The effects of evaporative weathering and biodegradation on alteration of diamondoid distributions have been quantitatively investigated. Finally, a spill case study by statistical evaluation of diagnostic ratios using the "two-tailed" Student's tapproach is presented to illustrate the unique utility of diamondoids for correlation and differentiation of unknown spilled diesels.


Subject(s)
Adamantane/analysis , Environmental Pollutants/chemistry , Petroleum/analysis , Adamantane/chemistry , Forensic Sciences/methods , Gas Chromatography-Mass Spectrometry/methods
14.
Environ Sci Technol ; 39(22): 8700-7, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16323765

ABSTRACT

Biomarkers have become increasingly important for identifying the source of spilled oil, due to their specificity and high resistance to biodegradation. The biomarkers most commonly used in forensic investigations are the high molecular weight (MW) tri- and pentacyclic terpanes and steranes. For lighter petroleum products such as jet fuels and diesels, the refining processes remove most high MW biomarkers from the original crude oil feedstock. The smaller bicyclic sesquiterpanes, however, are concentrated in these products. Sesquiterpanes are ubiquitous components of crude oils and ancient sediments. Examination of GC-MS chromatograms of these bicyclic biomarkers using their characteristic fragment ions (m/z 123, 179, 193, and 207) provides a highly diagnostic means for identifying spilled oil, particularly for lighter refined product samples that are difficult to identify by current techniques. In this work, sesquiterpanes in crude oils and petroleum products are identified and characterized, distributions of sesquiterpanes in oils and refined products are compared, the effects of evaporative weathering on sesquiterpane distributions are examined, and a methodology using diagnostic indices of sesquiterpanes is developed for oil correlation and differentiation. Finally, two case studies are presented to illustrate the unique utility of sesquiterpanes for fingerprinting and identifying unknown diesel spills.


Subject(s)
Environmental Pollutants/analysis , Petroleum/analysis , Chromatography, Gas , Fresh Water , Mass Spectrometry , Seawater , Water Pollutants, Chemical
15.
J Chromatogr A ; 1038(1-2): 201-14, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15233535

ABSTRACT

In this paper, a case study of the Detroit River mystery oil spill (2002) is presented that demonstrates the utility of detailed and integrated oil fingerprinting in investigating unknown or suspected oil spills. The detailed diagnostic oil fingerprinting techniques include determination of hydrocarbon groups and semi-quantitative product screening, analysis of oil-characteristic biomarkers and the extended suite of parent and alkylated polycyclic aromatic hydrocarbons (PAHs), and quantitative determination of a variety of diagnostic ratios of "source-specific marker" compounds. The detailed chemical fingerprinting data and results highlight the followings: (1) The spill samples were largely composed of used lube oil mixed with smaller portion of diesel fuel. (2) The diesel in the samples had been weathered and degraded. (3) Sample 3 collected from N. Boblo Island on 14 April was more weathered (most probably caused by more evaporation and water-washing) than samples 1 and 2. (4) All fingerprinting results clearly demonstrated oils in three samples were the same, and they came from the same source. (5) Most PAH compounds were from the diesel portion in the spill samples, while the biomarker compounds were largely from the lube oil. (6) Input of pyrogenic PAHs to the spill samples was clearly demonstrated. The pyrogenic PAHs were most probably produced from combustion and motor lubrication processes, and the lube oil in these spill samples was waste lube oil.


Subject(s)
Petroleum/analysis , Water Pollutants, Chemical/analysis , Michigan , Polycyclic Compounds/analysis
16.
Mar Pollut Bull ; 47(9-12): 423-52, 2003.
Article in English | MEDLINE | ID: mdl-12899888

ABSTRACT

Oil, refined product, and pyrogenic hydrocarbons are the most frequently discovered contaminants in the environment. To effectively determine the fate of spilled oil in the environment and to successfully identify source(s) of spilled oil and petroleum products is, therefore, extremely important in many oil-related environmental studies and liability cases. This article briefly reviews the recent development of chemical analysis methodologies which are most frequently used in oil spill characterization and identification studies and environmental forensic investigations. The fingerprinting and data interpretation techniques discussed include oil spill identification protocol, tiered analytical approach, generic features and chemical composition of oils, effects of weathering on hydrocarbon fingerprinting, recognition of distribution patterns of petroleum hydrocarbons, oil type screening and differentiation, analysis of "source-specific marker" compounds, determination of diagnostic ratios of specific oil constituents, stable isotopic analysis, application of various statistical and numerical analysis tools, and application of other analytical techniques. The issue of how biogenic and pyrogenic hydrocarbons are distinguished from petrogenic hydrocarbons is also addressed.


Subject(s)
Chemistry Techniques, Analytical/methods , Environmental Monitoring/methods , Hydrocarbons/chemistry , Petroleum/analysis , Water Pollutants/analysis , Accidents , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL