Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 1022445, 2022.
Article in English | MEDLINE | ID: mdl-36466886

ABSTRACT

Midgut receptors have been recognized as the major mechanism of resistance to Cry proteins in lepidopteran larvae, while there is a dearth of data on the role of hemocyte's response to Cry intoxication and resistance development. We aimed at investigating the role of circulating hemocytes in the intoxication of Cry1F toxin in larvae from susceptible (ACB-BtS) and resistant (ACB-FR) strains of the Asian corn borer (ACB), Ostrinia furnacalis. Transcriptome and proteome profiling identified genes and proteins involved in immune-related (tetraspanin and C-type lectins) and detoxification pathways as significantly up-regulated in the hemocytes of Cry1F treated ACB-FR. High-throughput in vitro assays revealed the binding affinity of Cry1F with the tetraspanin and C-type lectin family proteins. We found significant activation of MAPKinase (ERK 1/2, p38α, and JNK 1/2) in the hemocytes of Cry1F treated ACB-FR. In testing plausible crosstalk between a tetraspanin (CD63) and downstream MAPK signaling, we knocked down CD63 expression by RNAi and detected an alteration in JNK 1/2 level but a significant increase in susceptibility of ACB-FR larvae to Cry1F toxin. Information from this study advances a change in knowledge on the cellular immune response to Cry intoxication and its potential role in resistance in a lepidopteran pest.


Subject(s)
Bacillus thuringiensis , Animals , Humans , Larva , Hemocytes , Zea mays , Asian People , Lectins, C-Type
2.
Plant Dis ; 106(4): 1134-1142, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34752126

ABSTRACT

Microbial communities are essential for soil health, but fungicide application may have significant effects on their structure. It is difficult to predict whether nontarget pathogens of applied fungicides in the soil will cause crop damage. Tebuconazole is a triazole fungicide that can be used as a seed treatment and, thereby, introduced to the soil. However, seed-applied tebuconazole has a potential risk of causing poor emergence of corn (Zea mays) seedlings. Using soil with a history of poor corn seedling emergence, we demonstrate through TA cloning and isolation that the poor emergence of corn seedlings from tebuconazole-coated corn seeds was primarily because of infection by surviving soil pathogens, specifically Pythium species that are not targeted by tebuconazole, rather than the phytotoxic effects of tebuconazole. Bioassay tests on tebuconazole-amended media showed that tebuconazole can suppress soil fungi while allowing Pythium to grow. Pythium species primarily contributing to the corn seed rot were more pathogenic at cooler temperatures. Furthermore, the nontarget biocontrol agent of Trichoderma spp. was strongly inhibited by tebuconazole. Taken together, the nontarget effects of tebuconazole are likely not significant under favorable plant growing conditions but are considerable because of low-temperature stress.


Subject(s)
Fungicides, Industrial , Pythium , Fungicides, Industrial/pharmacology , Prevalence , Seedlings , Seeds/microbiology , Soil , Triazoles/pharmacology , Zea mays
3.
Insect Sci ; 28(3): 602-610, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32515103

ABSTRACT

Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a major polyphagous pest with the potential to seriously damage various crops. A better understanding of FAW's performance on different hosts may help to predict which plants will be attacked when the preferred host is absent, and facilitate the development of effective pest management practices. We compared the larval performance of FAW fed on maize with that of FAW fed on potato and tobacco, which are important crops in China, using an age-stage two-sex life table and adult female oviposition preference experiments. In cage experiments with potato, tobacco, or maize as the host, FAW reared on maize exhibited the strongest performance with shorter developmental time in the larval stage, longer longevity, and a higher reproductive rate in adults. Females oviposited on maize in preference to potato or tobacco. Compared with larvae fed on maize, those fed on potato and tobacco exhibited significantly lower survival, with only 31.61% and 8.13% developing to the adult stage, respectively. Several life table parameters, including the mean generation time (T), net reproductive rate (R0 ), finite rate of increase (λ), and intrinsic rate of natural increase (r) were negatively affected in FAW fed on potato and tobacco. Our results support the preference-performance hypothesis, that is, that herbivore females maximize fitness by choosing host plants associated with strong larval performance. Although larvae and adults performed poorly on potato and tobacco, their offspring will be capable of establishing populations on them, posing a potential threat to these crops in China.


Subject(s)
Crops, Agricultural , Spodoptera , Animals , China , Herbivory , Insect Control , Larva/growth & development , Larva/physiology , Oviposition , Pest Control , Solanum tuberosum , Spodoptera/growth & development , Spodoptera/physiology , Nicotiana , Zea mays
4.
J Invertebr Pathol ; 115: 95-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24269376

ABSTRACT

The full-length cDNA of four Ofapn aminopeptidases were cloned and sequenced from susceptible and resistant Ostrinia furnacalis strains. Four sequences were identified as APN because they shared the common structural features with APN from Lepidoptera, including the signal peptide, GPI anchor signal, the zinc binding/gluzincin motif HEX2HX18E and the gluzincin aminopeptidase motif GAMEN. Compared with APN sequences from the susceptible strain, there were 9, 5, 10 and 12 amino acid variations in the deduced protein sequences from the resistant strain. There were also differences in mRNA expression of the four Ofapn genes between resistant and susceptible O. furnacalis strains.


Subject(s)
CD13 Antigens/genetics , Insecticide Resistance/genetics , Lepidoptera/enzymology , Lepidoptera/genetics , Amino Acid Sequence , Animals , Bacillus thuringiensis , DNA, Complementary/analysis , Insect Proteins/genetics , Isoenzymes/genetics , Molecular Sequence Data , Pest Control, Biological/methods , Reverse Transcriptase Polymerase Chain Reaction
5.
PLoS One ; 8(10): e75825, 2013.
Article in English | MEDLINE | ID: mdl-24098400

ABSTRACT

Ryanodine receptor (RyR) Ca(2+) release channel is the target of diamide insecticides, which show selective insecticidal activity against lepidopterous insects. To study the molecular mechanisms underlying the species-specific action of diamide insecticides, we have cloned and characterized the entire cDNA sequence of RyR from Ostrinia furnacalis (named as OfRyR). The OfRyR mRNA has an Open Reading Frame of 15324 bp nucleotides and encodes a 5108 amino acid polypeptide that displays 79-97% identity with other insects RyR proteins and shows the greatest identity with Cnaphalocrocis medinalis RyR (97%). Quantitative real-time PCR showed that the OfRyR was expressed at the lowest level in egg and the highest level in adult. The relative expression level of OfRyR in first, third and fifth-instar larva were 1.28, 1.19 and 1.99 times of that in egg. Moreover, two alternative splicing sites were identified in the OfRyR gene. One pair of mutually exclusive exons (a/b) were present in the central part of the predicted SPRY domain, and an optional exon (c) was located between the third and fourth RyR domains. Diagnostic PCR demonstrated that exons a and b existed in all developmental stages of OfRyR cDNA, but exon c was not detected in the egg cDNA. And the usage frequencies of these exons showed a significant difference between different developmental stages. These results provided the crucial basis for the functional expression of OfRyR and for the discovery of compound with potentially selective insect activtity.


Subject(s)
Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism , Lepidoptera/growth & development , Lepidoptera/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Alternative Splicing , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Exons/genetics , Insect Proteins/chemistry , Molecular Sequence Data , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL