Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Nutr ; 10: 1136458, 2023.
Article in English | MEDLINE | ID: mdl-37006921

ABSTRACT

Selenium is an essential microelement involved in various biological processes. Selenium deficiency increases the risk of human immunodeficiency virus infection, cancer, cardiovascular disease, and inflammatory bowel disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal microbiota-regulating properties. The non-linear dose-response relationship between selenium status and health effects is U-shaped; individuals with low baseline selenium levels may benefit from supplementation, whereas those with acceptable or high selenium levels may face possible health hazards. Selenium supplementation is beneficial in various populations and conditions; however, given its small safety window, the safety of selenium supplementation is still a subject of debate. This review summarizes the current understanding of the health-promoting effects of selenium on the human body, the dietary reference intake, and evidence of the association between selenium deficiency and disease.

2.
Phytomedicine ; 110: 154652, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36638713

ABSTRACT

BACKGROUND: The bark of Eucommia ulmoides (a perennial deciduous tree termed eucommia hereafter) has anti-hyperlipidemia effects due to its bioactive components. However, the slow growth of eucommia bark leads to a deficit in this resource. Studies have shown that eucommia leaf has bioactive components similar to those of eucommia bark and anti-hyperlipidemia effects. At present, the strength of the anti-hyperlipidemia effect of eucommia bark and eucommia leaf has not been reported. Their interaction with the gut microbiota and the mechanism by which the gut microbiota exerts anti-hyperlipidemia effects are unclear. PURPOSES: Through fecal microbiota transplantation (FMT) experiments, this study aimed to investigate the mechanism by which fecal bacteria suspensions containing chlorogenic acid (CGA), eucommia bark extract (EBE), and eucommia leaves extract (ELE) improve high-fat diet (HFD)-induced lipid metabolism disorders. Difference in anti-hyperlipidemia effects between EBE and ELE and exploring an eucommia bark substitute to improve the sustainable utilization of eucommia were also evaluated. RESULTS: EBE and ELE contain eight identical bioactive ingredients, and fecal bacteria suspensions containing EBE and ELE significantly improved HFD-induced lipid metabolism disorders and elevated blood glucose levels. The fecal bacteria suspension of healthy mice containing CGA, EBE, and ELE significantly reduced the relative abundance of Erysipelothrichaceae and Ruminococcaceae and promoted short chain fatty acids (SCFAs) production thereby activating the expression of the SCFA. G protein-coupled receptor 43 (GPR43) gene in colon and epididymal fat tissues. In addition, fecal bacteria suspensions of healthy mice containing CGA, EBE, or ELE significantly activated fasting-induced adipose factor (Fiaf) gene expression in colon tissue and inhibited the secretion of lipoprotein lipase (LPL) in liver tissue, thereby inhibiting the synthesis of triglycerides (TG). Changed in the Erysipelotrichaceae and Ruminococcaceae relative abundances were significantly correlated with these target genes. Thus, regulating the abundance of the Erysipelotrichaceae and Ruminococcaceae could serve as a potential target for the role of fecal bacteria suspensions of healthy mice containing CGA, EBE, or ELE in the Fiaf-LPL gut-liver axis and SCFAs-GPR43 gut-fat axis. In addition, regarding HFD-induced lipid metabolism disorders and gut microbiota structural disorders, we found no significant difference between ELE and EBE. CONCLUSIONS: Our FMT experiments evidenced that EBE and ELE improve lipid metabolism disorders by regulating the gut microbiota, providing a new pathway for treating hyperlipidemia using eucommia dietary therapy. There was no significant difference in the anti-hyperlipidemia effects of ELE and EBE; thus, eucommia leaf could replace eucommia bark in traditional Chinese medicine, so as to achieve a sustainable utilization of eucommia resources.


Subject(s)
Eucommiaceae , Gastrointestinal Microbiome , Lipid Metabolism Disorders , Mice , Animals , Diet, High-Fat/adverse effects , Lipid Metabolism , Eucommiaceae/chemistry , Lipoprotein Lipase , Plant Bark , Liver , Fatty Acids, Volatile/metabolism , Plant Extracts/therapeutic use , Lipid Metabolism Disorders/drug therapy , Lipid Metabolism Disorders/metabolism
3.
Food Funct ; 12(1): 203-214, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33295903

ABSTRACT

Lychee pulp phenolics (LPP) was subjected to four simulated gastrointestinal digestions and colonic fermentation to investigate the changes in its phenolic composition and bioactivities; the fecal metabolic profiles of LPP-fed mice were also elucidated using UHPLC-ESI-QTOF-MS/MS. After simulated salivary, gastric and intestinal digestion, slight increases in phenolic acids and (+)-catechin occurred relative to undigested LPP, whereas other flavonoids showed an opposite trend. Unlike the above-described separate simulated digestions, successive gastrointestinal digestion significantly enhanced the release of phenolic compounds (p < 0.05), gallic acid (413.79%), ferulic acid (393.69%), (+)-catechin (570.27%) and rutin (247.54%). During colonic fermentation, ten detected phenolics were utilized by gut microbes, among which procyanidin B2 (22.35%) was the most degraded. LPP fermentation accelerated the production of short-chain fatty acids (122.79%). The metabolic pathways altered by LPP including unsaturated fatty acid, biotin, and nicotinamide metabolism may be the potential regulatory mechanisms and associated with the integrity of the gut barrier. These findings indicate that LPP may act as a promising candidate to protect gut health.


Subject(s)
Colon/metabolism , Digestion/physiology , Fermentation/physiology , Gastrointestinal Microbiome/drug effects , Litchi/metabolism , Metabolic Networks and Pathways/drug effects , Animals , Feces/microbiology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Models, Animal , Phenols/metabolism , Plant Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL