Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Soil ; 486(1-2): 639-659, 2023.
Article in English | MEDLINE | ID: mdl-37251257

ABSTRACT

Background and aims: The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods: Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results: The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion: This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-05898-8.

2.
PLoS One ; 16(2): e0246922, 2021.
Article in English | MEDLINE | ID: mdl-33577610

ABSTRACT

Slow-release urea (SRU) is a coated non-protein nitrogen (NPN) source for providing rumen degradable protein in ruminant nutrition. A meta-analysis was conducted to evaluate the effects of replacing vegetable protein sources with SRU (Optigen®, Alltech Inc., USA) on the production performance of dairy cows. Additionally, the impact of SRU supplementation on dairy sustainability was examined by quantifying the carbon footprint (CFP) of feed use for milk production and manure nitrogen (N) excretion of dairy cows. Data on diet composition and performance variables were extracted from 17 experiments with 44 dietary comparisons (control vs. SRU). A linear mixed model and linear regression were applied to statistically analyse the effect of SRU on feed intake and production performance. Feeding SRU decreased (P < 0.05) dry matter intake (DMI, -500 g/d) and N intake (NI, -20 g/d). There was no significant effect (P > 0.05) on milk yield, fat-corrected milk, energy-corrected milk, and milk fat and protein composition. However, SRU supplementation improved (P < 0.05) feed efficiency (+3%) and N use efficiency (NUE, +4%). Regression analyses revealed that increasing SRU inclusion level decreased DMI and NI whereas increasing dietary crude protein (CP) increased both parameters. However, milk yield and feed efficiency increased in response to increasing levels of SRU inclusion and dietary CP. The NUE had a positive relationship with SRU level whereas NUE decreased with increasing dietary CP. The inclusion of SRU in dairy diets reduced the CFP of feed use for milk production (-14.5%; 373.13 vs. 319.15 g CO2 equivalent/kg milk). Moreover, feeding SRU decreased manure N excretion by 2.7% to 3.1% (-12 to -13 g/cow/d) and N excretion intensity by 3.6% to 4.0% (-0.50 to -0.53 g N/kg milk). In conclusion, feeding SRU can contribute to sustainable dairy production through improvement in production efficiency and reduction in environmental impacts.


Subject(s)
Animal Feed , Cattle/physiology , Diet/veterinary , Milk/metabolism , Urea/metabolism , Animal Feed/analysis , Animal Husbandry , Animal Nutritional Physiological Phenomena , Animals , Dairying , Dietary Proteins/metabolism , Dietary Supplements/analysis , Female , Lactation
SELECTION OF CITATIONS
SEARCH DETAIL