Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Food Chem Toxicol ; 182: 114173, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925015

ABSTRACT

This study assessed the levels of environment and food-related exposures in urine of Austrian school children aged six to ten (n = 85) focusing on mycotoxins, phytoestrogens, and food processing by-products using two multi-analyte LC-MS/MS methods. Out of the 55 biomarkers of exposure reported in this study, 22 were quantified in the first void urine samples. Mycotoxins frequently quantified included zearalenone (detection rate 100%; median 0.11 ng/mL), deoxynivalenol (99%; 15 ng/mL), alternariol monomethyl ether (75%; 0.04 ng/mL), and ochratoxin A (19%; 0.03 ng/mL). Several phytoestrogens, including genistein, daidzein, and its metabolite equol, were detected in all samples at median concentrations of 22 ng/mL, 43 ng/mL, and 14 ng/mL, respectively. The food processing by-product 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was detected in 4% of the samples (median 0.016 ng/mL). None of the investigated samples contained the tested phytotoxins that were rarely considered for human biomonitoring previously (pyrrolizidine alkaloids, tropane alkaloids, aristolochic acids). When relating estimated exposure to current health-based guidance values, 22% of the children exceeded the tolerable daily intake for deoxynivalenol, and the estimated MOE for OTA indicates possible health risks for some children. The results clearly demonstrate frequent low-level (co-)exposure and warrant further exposome-scale exposure assessments, especially in susceptible sub-populations and longitudinal settings.


Subject(s)
Alkaloids , Mycotoxins , Child , Humans , Phytoestrogens , Biological Monitoring , Chromatography, Liquid , Austria , Tandem Mass Spectrometry/methods , Food Handling , Food Contamination/analysis
2.
Annu Rev Pharmacol Toxicol ; 63: 517-540, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36202091

ABSTRACT

Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.


Subject(s)
Environmental Exposure , Exposome , Pregnancy , Infant , Female , Humans , Child, Preschool , Environmental Exposure/adverse effects , Xenobiotics/toxicity , Fetal Development
3.
Compr Rev Food Sci Food Saf ; 20(2): 1188-1220, 2021 03.
Article in English | MEDLINE | ID: mdl-33506591

ABSTRACT

Animal milk types in sub-Saharan Africa (SSA) are processed into varieties of products using different traditional methods and are widely consumed by households to support nutritional intake and diet. Dairy products contain several microorganisms, their metabolites, and other chemical compounds, some with health benefits and many others considered as potential health hazards. Consumption of contaminated milk products could have serious health implications for consumers. To access the safety of milk products across SSA, studies in the region investigating the occurrences of pathogens as well as chemical compounds such as heat stable toxins and veterinary drug residues in animal milk and its products were reviewed. This is done with a holistic view in light of the emerging exposome paradigm for improving food safety and consumer health in the region. Herein, we showed that several published studies in SSA applied conventional and/or less sensitive methods in detecting microbial species and chemical contaminants. This has serious implications in food safety because the correct identity of a microbial species and accurate screening for chemical contaminants is crucial for predicting the potential human health effects that undermine the benefits from consumption of these foods. Furthermore, we highlighted gaps in determining the extent of viral and parasitic contamination of milk products across SSA as well as investigating multiple classes of chemical contaminants. Consequently, robust studies should be conducted in this regard. Also, efforts such as development cooperation projects should be initiated by all stakeholders including scientists, regulatory agencies, and policy makers to improve the dairy product chain in SSA in view of safeguarding consumer health.


Subject(s)
Drug Residues , Toxins, Biological , Africa South of the Sahara , Animals , Food Safety , Humans , Milk
4.
Anal Bioanal Chem ; 410(18): 4481-4494, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29766221

ABSTRACT

Mycotoxins produced by Alternaria fungi are ubiquitous food contaminants, but analytical methods for generating comprehensive exposure data are rare. We describe the development of an LC-MS/MS method covering 17 toxins for investigating the natural occurrence of free and modified Alternaria toxins in tomato sauce, sunflower seed oil, and wheat flour. Target analytes included alternariol (AOH), AOH-3-glucoside, AOH-9-glucoside, AOH-3-sulfate, alternariol monomethyl ether (AME), AME-3-glucoside, AME-3-sulfate, altenuene, isoaltenuene, tenuazonic acid (TeA), tentoxin (TEN), altertoxin I and II, alterperylenol, stemphyltoxin III, altenusin, and altenuic acid III. Extensive optimization resulted in a time- and cost-effective sample preparation protocol and a chromatographic baseline separation of included isomers. Overall, adequate limits of detection (0.03-9 ng/g) and quantitation (0.6-18 ng/g), intermediate precision (9-44%), and relative recovery values (75-100%) were achieved. However, stemphyltoxin III, AOH-3-sulfate, AME-3-sulfate, altenusin, and altenuic acid III showed recoveries in wheat flour below 70%, while their performance was stable and reproducible. Our pilot study with samples from the Austrian retail market demonstrated that tomato sauces (n = 12) contained AOH, AME, TeA, and TEN in concentrations up to 20, 4, 322, and 0.6 ng/g, while sunflower seed oil (n = 7) and wheat flour samples (n = 9) were contaminated at comparatively lower levels. Interestingly and of relevance for risk assessment, AOH-9-glucoside, discovered for the first time in naturally contaminated food items, and AME-3-sulfate were found in concentrations similar to their parent toxins. In conclusion, the established multi-analyte method proved to be fit for purpose for generating comprehensive Alternaria toxin occurrence data in different food matrices. Graphical abstract ᅟ.


Subject(s)
Alternaria/chemistry , Food Analysis/methods , Food Contamination/analysis , Mycotoxins/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Flour/analysis , Food, Preserved/analysis , Food, Preserved/microbiology , Limit of Detection , Solanum lycopersicum/chemistry , Sunflower Oil/chemistry , Triticum/chemistry
5.
Cell Chem Biol ; 25(3): 291-300.e3, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29337187

ABSTRACT

Recently, the palbociclib/letrozole combination therapy was granted accelerated US FDA approval for the treatment of estrogen receptor (ER)-positive breast cancer. Since the underlying metabolic effects of these drugs are yet unknown, we investigated their synergism at the metabolome level in MCF-7 cells. As xenoestrogens interact with the ER, we additionally aimed at deciphering the impact of the phytoestrogen genistein and the estrogenic mycotoxin zearalenone. A global metabolomics approach was applied to unravel metabolite and pathway modifications. The results clearly showed that the combined effects of palbociclib and letrozole on cellular metabolism were far more pronounced than that of each agent alone and potently influenced by xenoestrogens. This behavior was confirmed in proliferation experiments and functional assays. Specifically, amino acids and central carbon metabolites were attenuated, while higher abundances were observed for fatty acids and most nucleic acid-related metabolites. Interestingly, exposure to model xenoestrogens appeared to counteract these effects.


Subject(s)
Letrozole/pharmacology , Metabolome/drug effects , Phytoestrogens/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carbon/metabolism , Diet , Female , Genistein/chemistry , Genistein/pharmacology , Humans , Letrozole/chemistry , Letrozole/therapeutic use , MCF-7 Cells , Metabolomics , Phytoestrogens/chemistry , Piperazines/chemistry , Piperazines/therapeutic use , Principal Component Analysis , Pyridines/chemistry , Pyridines/therapeutic use , Receptors, Estrogen/metabolism , Zearalenone/chemistry , Zearalenone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL